a2 United States Patent

Galati et al.

US009213550B1

US 9,213,550 B1
Dec. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54) AUTOMATED DECOMPOSITION FOR 2010/0332599 Al* 12/2010 Tapolcai GOG6F 9/5066
MIXED INTEGER LINEAR PROGRAMS _ 709/205
WITH EMBEDDED NETWORKS REQUIRING 2014/0122390 Al* 52014 Narisetty ... OGN 99003
MINIMAL SYNTAX

OTHER PUBLICATIONS
(71) Applicants:Matthew Victor Galati, Glen Mills, PA
(US); Robert William Pratt, Niskayuna, “SAS/OR 13.2 Users Guide Mathematical Programming”, SAS
NY (US); Leonardo Bezerra Lopes, Institute Inc., Chapter 8, 2014, 25 pages, Author unknown.
Cary, NC (US) “SAS/OR 13.2 Users Guide Mathematical Programming”, SAS
Institute Inc., Chapter 15, 2014, pp. 701-775 , Author unknown.
(72) Inventors: Matthew Victor Galati, Glen Mills, PA “SAS/OR 13.2 Users Guide Mathematical Programming”, SAS
(US); Robert William Pratt, Niskayuna, Institute Inc., Chapter 15, 2014, pp. 776-808 , Author unknown.
NY (US); Leonardo Bezerra Lopes, “SAS/OR 13.2 Users Guide Mathematical Programming”, SAS
Cary, NC (US) Institute Inc., Chapter 9, 2014, pp. 373-450, Author unknown.
“SAS/OR 13.2 Users Guide Mathematical Programming”, SAS
(73) Assignee: SAS INSTITUTE, INC., Cary, NC ([JS) Institute IIIC., Chapter 9,.20 14, Pp. 45%-482 Author u.nknown.
“SAS/OR 13.2 Users Guide Mathematical Programming Examples”,
(*) Notice: Subject to any disclaimer, the term of this SAS Institute Inc., 2014, pp. 1-100, author unknown.
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 0 days.
Primary Examiner — Chuong D Ngo
(21) Appl. No.: 14/722,624 (74) Attorney, Agent, or Firm — Kacvinsky Daisak Bluni,
(22) Filed: May 27,2015 PLLC
(57) ABSTRACT
Related U.S. Application Data An apparatus includes a communications component to

(60) Provisional application No. 62/003,542, filed on May receive computer-executable query instructions to solve a
27, 2014. MILP problem, the query instructions including a first

expression conveying an objective function and side con-

(51) Int.CL straint that define a master problem of the MILP problem, a
GO6F 9/38 (2006.01) second expression conveying a mapping of graph data to a

(52) US.CL graph, and a thqu expression conveying a selection of a
CPC GOGF 9/3836 (2013.01) graph-based algorithm to solve a subproblem of the MILP

L e ’ problem; a subproblem component to replace the third

(58) Field of Classification Search expression with a fourth expression during decomposition of
CPC DTS TSP GpGF 9/3836 the MILP problem, the fourth expression including instruc-
See application file for complete search history. tions to implement the graph-based algorithm to solve the

. subproblem; and an execution control component to perform

(56) References Cited iterations of solving the MILP problem that include executing

the first expression to derive a solution to the master problem;
and executing the fourth expression to derive a solution to the
subproblem based on the mapping and the master problem

U.S. PATENT DOCUMENTS

2006/0112049 Al* 5/2006 Mehrotra GO6F 17/11 .
706/46 solution.
2009/0228417 Al* 9/2009 Rothberg GO6N 3/126
706/46 20 Claims, 16 Drawing Sheets

recelve query instructions to solve
MILP problem including syntax
expressing objective function, side
constraint(s), and both a mapping
and an Indication of selection of
graph-based algorithm to solve
each subproblem
2210

display
visualization
2260

generate visualization of
graph and/or graph

as part of decomposing MILP
problem into master problem
and subproblem(s), replace
expressions of objective
function and side constraint(s}
with Instructlons for solving solution of MILP problem
master problem for display
i b
as part of decomposing MILP problem
into master problem and
subproblem(s), replace expressions of
mapping function and selection of
graph-based algorithm foreach .
with i ions for
solving that subproblem using the
selected graph-based algorithm
2230

in each of multiple iterations,
alternately execute the
instructions for solving the
master problem and the
ions for solving each
subproblem to solve MILP
problem

2200 —*

US 9,213,550 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

“SAS/OR 13.2 Users Guide Mathematical Programming Examples”,
SAS Institute Inc., 2014, pp. 101-200, author unknown.

“SAS/OR 13.2 Users Guide Mathematical Programming Examples”,
SAS Institute Inc., 2014, pp. 201-300, author unknown.

“SAS/OR 13.2 Users Guide Mathematical Programming Examples”,
SAS Institute Inc., 2014, pp. 301-392, author unknown.

Galati, Matthew, “Decomposition Methods for Integer Linear Pro-
gramming”, Jan. 2010, pp. 1-75.

Galati, Matthew, “Decomposition Methods for Integer Linear Pro-
gramming”, Jan. 2010, pp. 76-140.

Galati, Matthew, “Decomposition Methods for Integer Linear Pro-
gramming”, Jan. 2010, pp. 141-162.

Gamrath, Gerald, “Generic Branch-Cut-and-Price”, Mar. 2010, pp.
1-40.

Gamrath, Gerald, “Generic Branch-Cut-and-Price”, Mar. 2010, pp.
41-75.

Gamrath, Gerald, “Generic Branch-Cut-and-Price”, Mar. 2010, pp.
76-115.

Gamrath, Gerald, “Generic Branch-Cut-and-Price”, Mar. 2010, pp.
116-160.

Gamrath, Gerald, “Generic Branch-Cut-and-Price”, Mar. 2010, pp.
161-208.

Ralphs, et al.,, “Decomposition in Integer Linear Programming”,
Aug. 2005, pp. 1-25.

Ralphs, et al.,, “Decomposition in Integer Linear Programming”,
Aug. 2005, pp. 26-49.

“NEOS Solvers”, <http://www.neos-server.org/neos/solvers>,
retrieved May 26, 2015, 4 pages, Author unknown.

“Mixed-Integer Linear Problems (MILP)”, MILP—OpenOpt,
<http://openopt/MILP>, retrieved May 26, 2015, 2 pages, author
unknown.

“Mixed-integer linear programming (MILP)”, <http://www.
mathworks.com/help/optim/ug/intlinprog html, retrieved May 26,
2015, 14 pages, author unknown.

“Gurobi Optimizer Reference Manual”, Version 6.0, Copyright 2014,
Gurobi Optimization, Inc., pp. 1-75, author unknown.

“Gurobi Optimizer Reference Manual”, Version 6.0, Copyright 2014,
Gurobi Optimization, Inc., pp. 76-150, author unknown.

“Gurobi Optimizer Reference Manual”, Version 6.0, Copyright 2014,
Gurobi Optimization, Inc., pp. 151-225, author unknown.

“Gurobi Optimizer Reference Manual”, Version 6.0, Copyright 2014,
Gurobi Optimization, Inc., pp. 226-325, author unknown.

“Gurobi Optimizer Reference Manual”, Version 6.0, Copyright 2014,
Gurobi Optimization, Inc., pp. 326-425, author unknown.

“Gurobi Optimizer Reference Manual”, Version 6.0, Copyright 2014,
Gurobi Optimization, Inc., pp. 426-500, author unknown.

“Gurobi Optimizer Reference Manual”, Version 6.0, Copyright 2014,
Gurobi Optimization, Inc., pp. 501-572, author unknown.
“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, 83 pgs., author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 83-150 author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 151-225, author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 226-325, author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 326-400, author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 401-475, author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 476-550, author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 551-625, author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 626-725, author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 726-800, author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 801-900, author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 901-1000, author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 1001-1100, author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 1101-1200, author unknown.

“SAS/OR 9.22 User’s Guide Mathematical Programming”, SAS
Institute, 2010, pp. 1201-1276, author unknown.

* cited by examiner

US 9,213,550 B1

Sheet 1 of 16

Dec. 15, 2015

U.S. Patent

001
aolAap
Buimaia

0cZ
elep
s)nsal

087
Aeidsip

0gZ 0vs (1144
elep aupno. elep 095
s)|nsel |oJjuod ydesb ebelojs
0g% 0.8 0Z€
aseqelep suoponAsul suonanjsul
wyuobe papuedxo Aionb
(149 0658 008
wouodwoo aoBuaUI (s)eoinap
Jossasoud ylomjeu Bunpndwos 1
B 666 00T H
(s)ooinap
obelo)s
0ETl
ejep
ydei
0Se 06 00€ I
wsuodwos el oo1nep
Jossasoud ylomjeu Bunpndwos
08t 0Z¢ —
Aejdsip suononasul %wm
f1onb obelo)s
0ce 0ee b]73] >
S|o1uoD
elep aupnol 000}
apinb [OJIUOD
vl Old

US 9,213,550 B1

Sheet 2 of 16

Dec. 15, 2015

U.S. Patent

Jusuodwod adeLoUl

(1] 179 ocT
elep aunnol elep 095
s)nsal |oJjuod ydeib ebelois
0ES 0S5 0
aseqelep suonongsul suononsul
wyuobe pepuedxes Alenb
0SS 06G 00S
juauodwos aoepaUl (s)ooinap
Josseo0ud ylomjeu Buinndwos
| 666
0S¢ 06t 00%

291n9p Bundwos

Jossaooud ylomjau
08€ 0¢z 0¢ 0oe
Ae|dsip elep suonsngsul
obelios
s)nsal Alanb
0ce
S|0JJU0D (i[5 0%e 0cT
ejep aupnol ejep
apinb |0Jjuco ydelib

US 9,213,550 B1

Sheet 3 of 16

Dec. 15, 2015

U.S. Patent

00t
0GE
jusuoduwiod ove mhﬂwﬂﬂo
10ssa00.d aunnoJ |OIU0D 1
grt
jusuodwiod
oz Buliepusl
ejep
6/€
(s)uonosjes Synsad Bvc 06¢
wuuoble jusuodwoo okl
paseq-ydeib ocT suoljedunwuiod Jdomiou
8t i
ydeib
(s)uonouny
Buiddew 0ge %€ o5e
2312]0] jusuodwod feidst
9/¢ apinb Buipinb |9sip
(s)urensuos
epIs 0€
suononJsul
GIE fienb 4723
uonouny jusuodwoo (443
aAnosiqo \ Bunipe $|0JJUOD
¢l
ainjonns
elep ydeib
>
TZ€E Jspiod 0001
10
OET ejep ydeb ¢ 9ld

US 9,213,550 B1

Sheet 4 of 16

Dec. 15, 2015

U.S. Patent

\/

L —— 288

[F4:]

IY 08g

VI _ = swi xew _ ~
m_ = v_:_m_
H_u wu50m_ ¢c9s
LT9V
sjuejsuo0y) 1ajuj T OISV
) € 7IS€
LSbhe
crTee
€2S¢C
253 TTWwe
ainonis € oTET
ejep ydeib /l/._ awi3 ‘3500) _ 01T ZT[Y
BJEp JO 2INJON.S J8jug ejep Jo3 @
elep oue _ = _\\
128
| e)ep JO [oqeT] Jeg ejep Jo sounog seg O
188 —°)

TZ¢ Jayuiod
1o
OEl eep ydesb

\ /

US 9,213,550 B1

Sheet 5 of 16

Dec. 15, 2015

U.S. Patent

9/t
(shurensuod
opis

auny xew => [[1]mo)d , [[1]awn {SOYV ul <[1>} wns

sjulensuo) apig Jejug

— ¥88

a¢€ Old

»— 00€

iY 08e

glc
uonouny
aAnoalqo

‘[M]mol4 4 [[]3s00 {SDHY ul <[1>} wns = 3s0)|ej0] UIW

uonoun 4 eAnoslqQ Jejug

J

128 —T

‘Azeuiq {SDYVv} Mol ten

‘u) Xewng = awi} Xew wnu
3uls wnu
{22unoswg = 324n0s wnu

{l1} {SO¥v w1 <[1>} uoun = SIQON 195
‘awn3 3500 [[1]=SHYv 03Ul eIRP~ 21E RPIEP PR3
{souv} swn wnu

{soyv} 1500 wnu
‘SOYY <wnu‘wnu> 1S

Huisy =

suoljelepag i=2iul

£88 —1

"\

US 9,213,550 B1

Sheet 6 of 16

Dec. 15, 2015

U.S. Patent

08¢

o€ OId

9pAd -- paseqg-ydess
15310} -- paseq-yde.3d
ino} -- paseq-ydeu8
yied -- paseq-ydeu8

A dlIN

wyuob|y aAj0g 108|198

‘pus
= or[Mmo4
"= wouyMmol4
‘op {SDYv u! <['1>} 10}

uoioun4 Buiddepy Jajug

688

6.€
(s)uonosjes
wyuobie
paseq-ydelb

8¢
(s)uonouny
Buiddew

US 9,213,550 B1

Sheet 7 of 16

Dec. 15, 2015

U.S. Patent

¥ Old »— 000}
VS s
suononasul H e
wojqoud Jojsew i (s)usuodwoo :%
m i, Wi Josseooud Sulnol jonRUod ocZ
qIC [gjep synsal
i| suogonysu / Jusuodwod
4| we|qoidgns 06 [0JJU0D UOIINDDXD
suopongsul wm,wMva
rAk papuedxe (57
aunjonuys \ Jusuodwoo wyjuoble
ejep ydeib 0/¢€ uonisodwoosp
suonanysul 0cl
TZ€ Jowiod Aienb K 555 ejep ydeif
10 Jusuodwod
OET erep ydetb L SUOIEIUNWWOoD 068
Amvmm_mmv Sosaul
: NOITNET
Bunndwos XHom

US 9,213,550 B1

0.9
suonohasul
pepuedxs

-

0cs
aseqgelep
wyuoble

0/¢

suononnsul Alanb

plecsllllllly

Sheet 8 of 16

8%
(s)uoponysul
wia|qoadgns

8F%
jusuodwod

wiajqoJdgns

6.
(s)uonosiss
wyuobie
peseqg-yde.b

T

(443
ainjoni)s
elep ydeib

TZT Jouiod
1o

0c1 eep ydesb

Dec. 15, 2015

(71
suonongsul
wia|qoud
Joysew

€vs
jusuodwos

uonisodwoosap

8/¢ B
(s)uonouny
Buiddew

(453

ainjonu)s
elep ydeib

TZ€ 1o1u10d
1o

Ot1 eep ydelb

L

1722
jusuodwoo

wajqoud

Jojsew

9/¢
(shurensuod

apis

U.S. Patent

74
uopouny
aAnoalqo

US 9,213,550 B1

Sheet 9 of 16

Dec. 15, 2015

0E% 9 Old
aseqgejep wyuobje
L »— 008
(515
e1ep wyjuobje Jad
suononsul SJuIBlISUoD
uoneuaws|duw uonejuswa|dwi 0/¢€
oIS ! suononssul Aienb
suononysul ;
papuedxa 8¢
(s)uopoajes
T wyuoBe
615 Jojelauab paseq-ydesS |:
(s)uononypsu !
wojqouidgns co_uo:._hmc_ T .
wisiqo. m_qm (s)uonouny Buiddew
gaYs pojg’
el { po |
uonezie|eJed S
¢t [A5%
ainjoniis Em:wnwo.Eoo ainjonis
elep ydelb elep ydelb
1P Y wsa|qoldgns 1P U
TZ< Jowiod {TZ€ Joiod '}
o 1 1 1 | T 157 '
0ct ejyep ydeib 0ET ejep yde.b

U.S. Patent

US 9,213,550 B1

Sheet 10 of 16

Dec. 15, 2015

U.S. Patent

0/S
suonon.ysul
papuedxs

viGe
suononJsul

wa|goud
Jaysew

it
amnpnns g

ejep ydeib

1Z¢ J8puiod
o
o<t eep ydeib

17 L Old
jusuodwoo
wajqoidgns 005
88¥5
10}08)9p
uonezjo|eled 07c
suononsul
Aienb
9/¢
1772 (s)urensuoo
Jojesauab apIs
uononnsul
. . 73
Eo_no._m, Jojsew Longuns
aAndalqo
it
alnjonns
ejep ydeib
TZ€ Jeyuiod
75 10
Juauodwod €T elep ydesb

wa|qoud Jssew

US 9,213,550 B1

Sheet 11 of 16

Dec. 15, 2015

0G5S
suodwod

Josssaoolid

0tz

glep sjnsa.

8aPrS
Jjusuodwod

uoINoaXa
|olesed

05
suononjsul
pepuedxa

008
a0IA9p
Bunndwoo

25972
juauodwo?

uoneulpJood
uoInnoexe

8%
(s)uononnsui
wajqoldgns

(74
suonongsul

179
Jusuodwod

|0JJuU0D
uonhoaxa

wajqoud
lajsew

€

7N

aInjons
ejep ydeib

TZ¢ Jauiod
lo

OET eiep ydeudb

U.S. Patent

]
-

epeescssssss

US 9,213,550 B1

o0 P 8IS (074
iii (s)usuodwod yauodwod (s)uopannsul suonangsul
41 Jossesold UoneUIPJOoI wa|qoidgns pepuedxs
uonnoaxe
¢E
0tz 574 alnpnys
Elep sjnsal suodwos TZT Jeuiod ejep ydeib
|0Ju0d Jo
G005 uonnooxs DET eyep ydeib
(s)ad1aap Bunndwos

Sheet 12 of 16

Dec. 15, 2015

0SS —— — —

Wauodwos 8573 PG¥G vS 05
10ss820.1d jusuodwod wsuodwod suononJsul suononasul
uonnoaxs | | uoneuipiood ws|qoud papuedxs

[ejesed uoinoexe Jejsew
— It
(1[92 (o1 7e} aJnons
Ejep sjnsal Jusuodwos [0LUOD UOIINOBXS TZE sopuiod ejep yde.b
Jo
B00S OE1 eep ydesb

ao1nap Bunndwoo

U.S. Patent

US 9,213,550 B1

Sheet 13 of 16

Dec. 15, 2015

U.S. Patent

44 ¥4
wejqoidgns

Joy (s)uonouny
Buiddew anwo0.

0E1¢
wa|qoidgns

10} uopouny
Buiddew Jajue 0}
jdwoud |ensia uaseud

T

[4A4T4
JUIRLISUOD BpIS BUO

}seg| 1e pue uopouny
anioalqo Buissaidxe
XeJUAS aAI903.

41 %4
d11IN ®A|0s 0}
wyjuobe paseq-ydelb
JO UOI]08|8S auo 1S9
1e pue Buiddew suo
1se9| 1e ‘(s)ulensuod
apis ‘uolouny aandsiqo
Buissaldxo xejuAs
Buipnjoul suononsul
Alenb a1elouab

ovie
uoI109|as ayew
1dwoud pue waqoidgns
9A|0S 0] swiypLoble
JO Juswihosse Juasald

l

r474 %4
wajgoidgns aAj0s

0] wyuJobe paseq
-ydeub jo uonosjes
JO UonEJIpUI DAI900

0Slc
wejqoidgns

Jayiouy

T

0cie
(shurensuoo
apIsS pue uonouny
oA109Iqo ue Jojud 0}
1dwoud jensia uasaud

|

crie
elep
ydeub Jo uoneoo|
O uonesIpul Jo
eiep ydeub aaigo0.

[]1Y4
ejep ydeisb jo
uoieo0| Jo uonesipul
Jo ejep ydeub Jojue 0}
jdwoud [ensia juasaud

US 9,213,550 B1

Sheet 14 of 16

Dec. 15, 2015

U.S. Patent

(Vjz244
we|qoid

dTIN aAjos 0] wajqoldgns
yoea BulAjos 1o} suononysul
o} pue wejqo.d Jajsew
ayj Buinjos Joy suonongsul
ay] a1noaxa Ajpjeulsye
‘suonesa) sidi|nw Jo yoea ui

l

058c¢C
Aejdsip Joj
weajgold 47|IN 40 uopn|os
ydeub Jo/pue ydeisb
JO uoljezijensia ajelausb

09¢C
uoneziensia
Ae|dsip

0E€cC
wyuobe paseq-ydelb payosjes
ay) Buisn woiqoidgns 18 BulAjos
1o} suoiongsul yum wajgosdgns
yoeo Jo] wyobie paseqg-yde.b
JO uond9|es pue uonouny uiddew

10 suoissaidxo aoejdal ‘(s)wvjgoidgns

pue wsjqoid Je)seL ojul

wajqoid 47N Buisodwoosap jo Led se

0cce
wajqolid Js)sew

Buiajos 1o} suolionasUl Yim
(S)u1enSUOD apis pue uonoduny
eA1128[qo Jo suoissaidxe
aoeldal ‘(s)wajqoidgns pue
wejgo.d Jeisew oyl wejgold

d11IN Buisodwoosap jo ued se

T

Olce
wajqoidgns yoea

B9AJ0S 0] wyplobie paseg-ydelb
JO UOO9JeS JO UOHEIIPUI UB pue
Buiddew e yjoq pue ‘(s)jures}suod
apis ‘uonouny aanoalgo Buissaidxa
xejuAs Buipnpul weqold 41N
aAj0s 0] suoponssul Alanb aalRoal

US 9,213,550 B1

Sheet 15 of 16

Dec. 15, 2015

U.S. Patent

(0254
sadinep Bunndwoos

Jayjo aidnjnw Buowe

swajqoidqgns aA|0s
0] SUORONUIISUI SINGIASIP

.

05¢C

ws|goad 47|l A0S 0] SadIAap
Bupndwo? Jayjo ajdiyinw
ay} Aq wajqoidgns yoes Buirjos
J0J SUORONJISUI 8Y] JO UOIINOeXd
ay] asheo pue ws|qoid Jeisew
ey} Buiajos Jo} suoponisul
By} 9)noaxa Apjeuldle
‘suoneJa)l ajdnnw jJo yses ul

0cEe
wiyiobe peseq-ydelb pejosjes
oy} Buisn wajgqoidgns 1eys Buiajos
10J suoienagsul yum wajqoidgns
yoea Joj wyobje peseqg-ydelb
1O Uonoa|ds pue uoouny Buiddew

10 suoissaJdxe ooejdal ‘(s)we|qoldgns

pue wajqoid Jajsew oul

wejqoud 471 Buisodwoosp Jo Jed se

.

09¢¢
Ae|dsip Jo} wajqold 4N Jo
uonnjos ydeub Jospue ydelf
JO uonezjjensia sjelauab

0Z¢E¢
uoReziensia
Aeldsip

0¢¢ee
wajqoid Jajsew

Buinjos 1o} suoansuUl Ym
(s)urensuos apis pue uonoauny
anjoalqo Jo suoissadxe
aoe|dal ‘(s)wajqoidgns pue
wa|qoud Jajsew ojul wajqoid

d11W Buisodwosap Jo 1ed se

T

olec
wajqoudgns yoea

aAjos 0} wyobie paseq-yde.b

JO UONDa|SSs JO UOIIBIIPUI UB pUB
Buiddew e yjoq pue ‘(s)iUuensuoo
apIs ‘uopouny aAloalqo buissaldxo

xejuAs Buipnpoul wejqodd JTIA
SA|0S 0] suoioNNsuUl Alanb aA1822l

US 9,213,550 B1

Sheet 16 of 16

Dec. 15, 2015

U.S. Patent

3G9%6
13]]0JJu0D
obelo)s

296
abelo)s
9|ejoA-UoU

q%96
19]|0J1U0D
abelo)s

066
soepOUI

3566

Jg||onuod
soeUAUI

096
abeiols

196

abeliols
3[Ne[OA

B306
1 1e||0)u02
obeio)s

g566

Jajjonuod
soeLaUl

666
sHomisu

€566

Jg|jonuoo
soeUaUI

¢l Ol

_H% I

HH

O 011 011 0111 0

| —656

g86

aoelaUl
Aeidsip

—

I
/

056

usuodwo?
Jossaooud

/ 0Z6

US 9,213,550 B1

1
AUTOMATED DECOMPOSITION FOR
MIXED INTEGER LINEAR PROGRAMS
WITH EMBEDDED NETWORKS REQUIRING
MINIMAL SYNTAX

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of priority under 35
U.S.C. §119(e) to U.S. Provisional Application Ser. No.
62/003,542 entitled “AUTOMATED DECOMPOSITION
FOR MIXED INTEGER LINEAR PROGRAMS WITH
EMBEDDED NETWORKS REQUIRING MINIMAL
SYNTAX?” filed May 27, 2014, the entirety of which is incor-
porated herein by reference.

BACKGROUND

Numerous complex problems in a variety of fields from
predictive genetic marker analysis to network infrastructure
design to operations research logistics planning have proven
to be solvable as mixed integer linear programming (MILP)
problems. Solving such problems as MILP problems typi-
cally entails the iterative solving of multiple equations repre-
senting different facets of the MILP problem using math-
ematical programming-based algorithms to search for a result
that minimizes or maximizes a value.

SUMMARY

The following presents a simplified summary in order to
provide a basic understanding of some novel embodiments
described herein. This summary is not an extensive overview,
and it is not intended to identity key/critical elements or to
delineate the scope thereof. Its sole purpose is to present some
concepts in a simplified form as a prelude to the more detailed
description that is presented later.

An apparatus includes a processor component, and a com-
munications component for execution by the processor com-
ponent to receive computer-executable query instructions to
solve a mixed-integer linear programming (MILP) problem.
The query instructions include a first expression that conveys
an objective function and at least one side constraint of the
MILP problem, wherein the objective function and the at least
one side constraint define a master problem of the MILP
problem; a second expression that conveys a first mapping of
data values of graph data associated with the MILP problem
to a first graph; and a third expression that conveys a selection
of'a first graph-based algorithm to solve a first subproblem of
the MILP problem based on the first graph. The apparatus
further includes a subproblem component for execution by
the processor component to replace the third expression in the
query instructions with a fourth expression as part of a
decomposition of the MILP problem, the fourth expression
including instructions to implement the first graph-based
algorithm to solve the first subproblem, and an execution
control component for execution by the processor component
to perform an iteration of solving the MILP problem. The
performance of each iteration includes executing the first
expression to derive a solution to the master problem, and
executing the fourth expression to derive a solution to the first
subproblem based on the first mapping and the solution to the
master problem.

A computer-program product tangibly embodied in a non-
transitory machine-readable storage medium, the computer-
program product including instructions operable to cause a
computing device to perform computer operations including

15

20

25

30

40

45

2

receive computer-executable query instructions to solve a
mixed-integer linear programming (MILP) problem; wherein
the query instructions include a first expression conveying an
objective function and at least one side constraint of the MILP
problem, wherein the objective function and the at least one
side constraint define a master problem ofthe MILP problem;
a second expression conveying a first mapping of data values
of graph data associated with the MILP problem to a first
graph; and a third expression conveying a selection of a first
graph-based algorithm to solve a first subproblem of the
MILP problem based on the first graph. The computing
device is caused to perform further operations including
replace the third expression in the query instructions with a
fourth expression as part of a decomposition of the MILP
problem, the fourth expression including instructions to
implement the first graph-based algorithm to solve the first
subproblem; and operations of an iteration to solve the MILP
problem, wherein the operations of the iteration include
executing the first expression to derive a solution to the master
problem and executing the fourth expression to derive a solu-
tion to the first subproblem based on the first mapping and the
solution to the master problem.

A computer-implemented method includes receiving com-
puter-executable query instructions to solve a mixed-integer
linear programming (MILP) problem, wherein the query
instructions include a first expression conveying an objective
function and at least one side constraint of the MILP problem,
wherein the objective function and the at least one side con-
straint define a master problem of the MILP problem; a sec-
ond expression conveying a first mapping of data values of
graph data associated with the MILP problem to a first graph;
and a third expression conveying a selection of a first graph-
based algorithm to solve a first subproblem of the MILP
problem based on the first graph. The computer-implemented
method further includes replacing the third expression in the
query instructions with a fourth expression as part of a
decomposition of the MILP problem, the fourth expression
including instructions to implement the first graph-based
algorithm to solve the first subproblem; and performing an
iteration of solving the MILP problem, wherein performing
the iteration includes executing the first expression to derive
a solution to the master problem and executing the fourth
expression to derive a solution to the first subproblem based
on the first mapping and the solution to the master problem.

In some embodiments, the second expression may convey
a second mapping of data values of the graph data to a second
graph; the third expression may convey a selection of a sec-
ond graph-based algorithm to solve a second subproblem of
the MILP problem based on the second graph; the fourth
expression may include instructions to implement the second
graph-based algorithm to solve the second subproblem; and
performing the iteration may include executing the fourth
expression to derive a solution to the second subproblem
based on the second mapping and the solution to the master
problem. Also, the third expression may include an indication
that the first and second subproblems are able to be solved
independently of each other, and the computer-implemented
method may include detecting the indication that the first and
second subproblems are able to be solved independently of
each other and generating the fourth expression to cause the
derivation of the solutions to the first and second subproblems
at least partially in parallel in response to detecting the indi-
cation. Further, the performing the iteration may include
deriving the solutions to the first and second subproblems at
least partially in parallel.

In some embodiments, the computer-implemented method
may include initiating a performance of the iteration, deter-

US 9,213,550 B1

3

mining whether the performance of the iteration solved the
MILP problem, and repeating performance of the iteration in
response to the MILP problem remaining unsolved. In some
embodiments, the data values of the graph data may be asso-
ciated with at least one of nodes of the first graph, or edges of
the first graph that each extend between a pair of nodes of the
first graph, and the first graph may be a graph of a network
comprising the nodes and the edges. In some embodiments,
the computer-implemented method may include receiving
the graph data, wherein the data values of the graph data may
be associated with nodes of the first graph, and the second
expression may include instructions to iterate through the
nodes of the first graph. In some embodiments, the computer-
implemented method may include receiving the graph data,
wherein the data values of the graph data may be associated
with edges of the first graph that each extend between a pair
of nodes of the first graph, and the second expression may
include instructions to iterate through the edges of the first
graph. In some embodiments, the computer-implemented
method may include presenting, by circuitry on a display,
guidance in providing the first, second and third expressions;
and monitoring manually-operable controls to receive the
first, second and third expressions. In some embodiments, the
computer-implemented method may include generating, by
circuitry, a visualization of at least the first graph and of a
result of solving the MILP problem for presentation on a
display.

To the accomplishment of the foregoing and related ends,
certain illustrative aspects are described herein in connection
with the following description and the annexed drawings.
These aspects are indicative of the various ways in which the
principles disclosed herein can be practiced and all aspects
and equivalents thereof are intended to be within the scope of
the claimed subject matter. Other features will become appar-
ent from the following detailed description when considered
in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates an example embodiment of a MILP
processing system.

FIG. 1B illustrates an alternate example embodiment of a
MILP processing system.

FIG. 2 illustrates an example of an operating environment
for a portion of a MILP processing system.

FIGS. 3A, 3B and 3C, together, illustrate an example of
prompting an operator of a computing device to provide
information needed to solve a MILP problem.

FIG. 4 illustrates an example of an operating environment
for another portion of a MILP processing system.

FIGS. 5, 6 and 7, together, illustrate an example of decom-
posing a MILP problem expressed as a side-constrained
graph problem.

FIGS. 8A and 8B each illustrate an example embodiment
of'solving a master problem and one or more subproblems to
solve a MILP problem.

FIG. 9 illustrates an example embodiment ofa logic flow of
prompting an operator through providing information needed
to solve a MILP problem.

FIG. 10 illustrates an example embodiment of a logic flow
of decomposing and solving a MILP problem as a side-con-
strained graph problem.

25

40

45

60

4

FIG. 11 illustrates another example embodiment of a logic
flow of decomposing and solving a MILP problem as a side-
constrained graph problem.

FIG. 12 illustrates an example embodiment of a processing
architecture.

DETAILED DESCRIPTION

Various embodiments described herein are generally
directed to the automated use of graph-based algorithms to
solve a MILP problem based on a minimum amount of input
that defines the MILP problem as a side-constrained graph
problem. More specifically, the MILP problem is decom-
posed into a master problem and one or more graph subprob-
lems based on its definition as a side-constrained graph prob-
lem, and graph-based algorithm(s) are used to solve the one or
more subproblems. Query instructions made up of minimal
syntax to solve a MILP problem using graph-based algo-
rithms may be received by a computing device either through
direct entry of the query instructions by an operator of the
computing device or through answers provided by the opera-
tor to a series of prompts or questions presented to the opera-
tor by the computing device. The computing device enables
the operator thereof to model the MILP problem as a side-
constrained graph problem such that the amount and/or com-
plexity of the input required from the operator is considerably
reduced from input that requires an understanding of the field
of MILP problems on the part of the operator to input that is
easier for most persons to mentally visualize. Specifically, the
operator specifies the graph data associated with nodes and/or
the links extending between the nodes ofa graph, an objective
function, one or more side constraints, an indication of which
graph-based algorithm to employ for each subproblem, and a
mapping of decision variables to the nodes and/or edges. The
MILP problem, as represented as a side-constrained graph
problem by the query instructions, is automatically decom-
posed into a master problem and one or more graph subprob-
lems to which the one or more specified graph-based algo-
rithms are to be applied. In so doing, expanded instructions
are automatically generated by the computing device to
implement the logic for solving the one or more subproblems
using the one or more specified graph-based algorithms.
Execution of the expanded instructions causes the perfor-
mance of multiple iterations of alternating between solving
the one or more subproblems and solving the master problem
to derive progressively better solutions with each iteration
until a solution is derived that optimizes the objective func-
tion and that satisfies the one or more side constraints and
subproblem constraints.

In using graph-based algorithms, an operator of a comput-
ing device is allowed to think of a MILP problem in a visual
manner (e.g., as a side-constrained graph problem), which is
often a more natural way to understand such complex prob-
lems. Further, even for those who have been trained to employ
math programming-based algorithms to solve such complex
problems, the ability to use graph-based algorithms may still
be advantageous since the use of math programming-based
algorithms often requires considerably more input and/or
input of greater complexity to manually define various math-
ematical relationships among variables and/or to define the
manner in which iterations are to be performed. Stated dif-
ferently, requiring even a person accustomed to approaching
such complex problems using math programming-based
algorithms burdens that person with a requirement to provide
considerably more input to specify considerably more aspects
of the manner in which such problems are to be solved.

US 9,213,550 B1

5

For MILP problems that are amenable to being solved via
graph-based algorithms, such use of graph-based algorithms
may be considerably more efficient than math programming-
based algorithms. As familiar to those skilled in the area of
MILP problems, the complexity of the instructions that cause
a processor component to solve a MILP problem using math
programming-based techniques may increase considerably
with each variable or side constraint that is added. In contrast,
the increase in complexity in instructions that occurs with the
addition of each variable or side constraint when using graph-
based algorithms is not as great. Thus, the use of graph-based
algorithms may greatly reduce storage and/or network band-
width resources to store and/or exchange instructions to cause
a processor component to solve a MILP problem. Further,
such use of graph-based algorithms to solve a MILP problem
may also result in considerably reduced processing require-
ments, thereby enabling a MILP problem to be solved in
considerably less time. In particular, more efficient use may
be made of multiple processor components and/or multi-core
processor components in solving multiple subproblems at
least partly in parallel by using graph-based algorithms to
solve each of those subproblems.

In applying graph-based algorithms to a MILP problem,
aspects of the MILP problem are represented with a graph
made up of nodes and edges, and data values on which a
solution is to be based are associated with the nodes and/or
with the edges. Depending on the nature of the problem, the
nodes may represent any of' a number of items associated with
the MILP problem, including and not limited to, genes of a
genetic sequence, persons, locations, or devices on a commu-
nications network. Correspondingly, the edges may represent
any of a number of items or relationships, including and not
limited to, observed associations between individual genes,
relationships between persons, pathways between locations,
or links in a communications network. The data values may
be any of a variety of measures and/or quantities associated
with each of the nodes and/or edges, including and not limited
to, monetary costs, amounts of time, travel distances, or ser-
vice quality levels. In some embodiments, such data values
may be received by a computing device from an operator of
the computing device. In other embodiments, such data val-
ues may be received from one or more storage devices that
may be co-located with the computing device or that may be
remotely accessible through a network.

Along with the data values, the computing device is pro-
vided with an objective function and one or more side con-
straints, received, for example, from the operator or from one
or more storage devices. The objective function specifies a
variable for which a value is to be derived through graph-
based algorithm(s) from the provided data values, and speci-
fies whether that value is to be minimized or maximized as
part of solving the MILP problem. The one or more side
constraints represent one or more limitations imposed by any
of a variety of possible circumstances that serve to constrain
the variety of feasible solutions that may be derived as part of
deriving the optimal value for the specified variable, as set
forth by the objective function.

The computing device is also provided with an indication
of'a mapping of the variables of the objective function and the
one or more side constraints to the nodes and/or to the edges
in the graph. In this way, the computing device is provided
with the information needed to establish the association(s)
between the decision variables and the nodes and/or the
edges.

The computing device is further provided with an indica-
tion of one or more graph-based algorithms to employ. A
separate graph-based algorithm may be specified to be

25

30

40

45

50

55

6

applied to each subproblem into which the MILP problem is
to subsequently be decomposed. In combination with at least
the objective function, the indication of which graph-based
algorithm to apply to each subproblem enables the computing
device to determine how to use the data values associated with
the nodes and/or edges to derive values for the specified
variable. Any of a variety of graph-based algorithms may be
specified, including and not limited to, graph-based versions
of minimum spanning tree (MST), the traveling salesman
problem (TSP), the shortest path problem (SP), and/or the
cycle detection algorithm.

In some embodiments, the computing device may provide
the operator with a user interface by which the operator
directly enters the objective function, the one or more side
constraints, the mapping, and the indication of which graph-
based algorithm is to be applied to each subproblem. In such
embodiments, such a user interface may include a display
and/or manually-operable controls of the computing device
that enable the operator to directly enter query instructions
that include expressions conveying such pieces of informa-
tion (e.g., commands, declarations and/or other instructions).
In other embodiments, the computing device may provide the
operator with a user interface by which the operator is
prompted to provide such pieces of information. In such
embodiments, the manner in which the operator does so may
be through direct entry of portions of the query instructions in
response to such prompting, may be through selecting menu
items or may be through a combination of both.

From query instructions that specify the objective function,
the one or more side constraints, and the graph-based algo-
rithm to apply to each subproblem, the computing device may
automatically decompose the MILP problem into a master
problem and the one or more subproblems. In so doing, the
computing device may interpret the query instructions to
generate expanded instructions that, when executed, cause a
processor component to perform iterations of alternating
between solving the one or more subproblems using the indi-
cated one or more graph-based algorithms (and using a solu-
tion to the master problem), and solving the master problem
using solution(s) from the one or more subproblems. In some
embodiments, the computing device may execute the
expanded instructions to perform such iterations and thereby
complete the solving of the MILP problem. In other embodi-
ments, the computing device may distribute the portion of the
expanded instructions for solving the master problem and/or
the one or more portions of the expanded instructions for
solving the one or more subproblems to one or more proces-
sor components and/or one or more other computing devices
to be executed. In particular, where there are multiple sub-
problems that are able to be solved independently of each
other such that none of the subproblems requires the solution
of another subproblem to be solved, portions of the expanded
instructions to solve each of the subproblems may be trans-
mitted to one or more other computing devices to be executed
atleast partly in parallel. However, regardless of whether such
distribution of portions of the expanded instructions and/or
such parallel execution takes place, iterations are still per-
formed in which there is alternating between solving the
master problem and solving the one or more subproblems.
Stated differently, while multiple subproblems may be solved
at least partly in parallel, the master problem and the one or
more subproblems may not be solved in parallel.

The solution to the MILP problem may be visually pre-
sented in graphical form and/or may serve as an input to
solving another problem. This may entail transmitting an

US 9,213,550 B1

7

indication and/or a rendered visual representation of the solu-
tion to the MILP problem to one or more other computing
devices.

With general reference to notations and nomenclature used
herein, portions of the detailed description that follows may
be presented in terms of program procedures executed on a
computer or network of computers. These procedural
descriptions and representations are used by those skilled in
the art to most effectively convey the substance of their work
to others skilled in the art. A procedure is here, and generally,
conceived to be a self-consistent sequence of operations lead-
ing to a desired result. These operations are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of elec-
trical, magnetic or optical communications capable of being
stored, transferred, combined, compared, and otherwise
manipulated. It proves convenient at times, principally for
reasons of common usage, to refer to what is communicated
as bits, values, elements, symbols, characters, terms, num-
bers, or the like. It should be noted, however, that all of these
and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to those quantities.

Further, these manipulations are often referred to in terms,
such as adding or comparing, which are commonly associated
with mental operations performed by a human operator. How-
ever, no such capability of a human operator is necessary, or
desirable in most cases, in any of the operations described
herein that form part of one or more embodiments. Rather,
these operations are machine operations. Useful machines for
performing operations of various embodiments include gen-
eral purpose digital computers as selectively activated or con-
figured by a computer program stored within that is written in
accordance with the teachings herein, and/or include appara-
tus specially constructed for the required purpose. Various
embodiments also relate to apparatus or systems for perform-
ing these operations. These apparatus may be specially con-
structed for the required purpose or may include a general
purpose computer. The required structure for a variety of
these machines will appear from the description given.

Reference is now made to the drawings, wherein like ref-
erence numerals are used to refer to like elements throughout.
In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding thereof. It may be evident, however,
that the novel embodiments can be practiced without these
specific details. In other instances, well known structures and
devices are shown in block diagram form in order to facilitate
a description thereof. The intention is to cover all modifica-
tions, equivalents, and alternatives within the scope of the
claims.

FIG. 1A illustrates a block diagram of an example embodi-
ment of a MILP processing system 1000 incorporating one or
more storage devices 100, a computing device 300, one or
more computing devices 500 and/or a viewing device 700. As
depicted, these computing devices 100,300,500 and 700 may
exchange graph data 130 made up of data values to use as an
input to solving a MILP problem, query instructions 370
made up of instructions expressing information needed to
solve the MILP problem, and/or results data 730 that indi-
cates the solution to the MILP problem through a network
999. However, one or more of the computing devices 100,
300, 500 and/or 700 may exchange other data entirely unre-
lated to solving MILP problems thereamong or with still
other computing devices (not shown) via the network 999. In
various embodiments, the network 999 may be a single net-
work that may extend within a single building or other rela-

25

30

35

40

45

55

8

tively limited area, a combination of connected networks that
may extend a considerable distance, and/or may include the
Internet. Thus, the network 999 may be based on any of a
variety (or combination) of communications technologies by
which communications may be effected, including without
limitation, wired technologies employing electrically and/or
optically conductive cabling, and wireless technologies
employing infrared, radio frequency or other forms of wire-
less transmission.

The MILP problem associated with one or more of the
graph data 130, the query instructions 370 and the results data
730 may be any of a variety of types of mathematical prob-
lems, including and not limited to, an analysis of observations
of'a complex system such as associations between genes in a
genetic sequence, a logistics problem associated with the
operation of a business or other enterprise, an analysis of
relationships between persons, or a problem of how to install
and/or configure a communications network. The graph data
130 may include data values associated with nodes and/or
edges of a graph to be employed with one or more graph-
based algorithms to solve one or more subproblems into
which the MILP problem is decomposed. In so doing, the
graph data 130 defines the graph. The query instructions 370
may include expressions in the form of declarations, com-
mands, and/or other types of instructions written in any of a
variety of programming languages or combinations of pro-
gramming languages that specify what the one or more graph-
based algorithms are and a mapping enabling the use of data
values of the graph data 130 with those graph-based algo-
rithms to solve the MILP problem. As will be explained in
greater detail, such expressions within the query instructions
370 may employ a relatively minimal form of syntax that
enables such indications to be conveyed with minimal effort,
and using minimal storage space and/or network bandwidth.
The results data 730 may include a visual representation of
the solution to the MILP problem that may be rendered for
visual presentation on a display.

In various embodiments, the computing device 300 incor-
porates one or more of a processor component 350, a storage
360, manually-operable controls 320, a display 380 and a
network interface 390 to couple the computing device 300 to
the network 999. The storage 360 may store one or more of a
control routine 340, guide data 330 and the query instructions
370. The control routine 340 may incorporate a sequence of
instructions operative on the processor component 350 to
implement logic to perform various functions.

In executing the control routine 340, the processor compo-
nent 350 may operate the display 380 and the manually-
operable controls 320 to provide a user interface to an opera-
tor of the computing device 300 to enable the operator to
provide various pieces of information needed to solve a MILP
problem. In some embodiments, such a user interface may
include a text editor or form of developing environment that
enables an operator to directly enter at least a portion of the
query instructions 370 to specify the various pieces of infor-
mation. In such embodiments, the operator may also provide
anindication that the graph data 130 stored by the one or more
storage devices 100 contains the data values that are to be
used as an input to solving the MILP problem, or may directly
enter the graph data 130 (e.g., via the controls 320).

In other embodiments, such a user interface may guide an
operator in a step-by-step manner with various prompts
through the entry of such pieces of information. In such other
embodiments, the processor component 350 may retrieve text
and/or graphical prompts to use in providing such guidance to
an operator from the guide data 330. Alternatively or addi-
tionally, the guide data 330 may provide indications of which

US 9,213,550 B1

9

prompt of multiple prompts to present next in response to a
particular piece of information provided by an operator in
response to a previously presented prompt. As will be
explained in detail, part of the presentation of one or more of
the prompts to an operator may entail presenting at least a
portion of the graph data 130 to the operator. In support of
doing so, the processor component 350 may be caused to
operate the network interface 390 to retrieve the graph data
130 from the one or more storage devices 100 via the network
999. This may be done to enable the operator to view data
values of the graph data 130 to confirm that the graph data 130
is the correct data to employ as an input to solving a MILP
problem. Alternatively, the operator may be prompted to enter
the graph data 130 directly (e.g., via the controls 320). The
processor component 350 may be caused by execution of the
control routine 340 in conjunction with the guide data 330 to
use the various pieces of information provided by an operator
to the various prompts to automatically generate the query
instructions 370, thereby sparing the operator the effort of
doing so.

Regardless of whether the query instructions 370 are
directly entered by an operator of the computing device 300
or are generated by the processor component 350 from pieces
of information needed to solve a MILP problem received by
the computing device 300 from the operator, the processor
component 350 may be caused to operate the network inter-
face 390 to transmit the query instructions 370 to the one or
more computing devices 500 via the network 999. Further,
where the graph data 130 is received by the computing device
300 from the operator, the processor component 350 may also
operate the network interface 390 to transmit the graph data
130 to the one or more computing devices 500 via the network
999. Otherwise, the one or more computing devices 500 may
retrieve the graph data 130 from the one or more storage
devices 100 as part of solving the MILP problem.

In various embodiments, each of the one or more comput-
ing devices 500 incorporates one or more of a processor
component 550, a storage 560 and a network interface 590 to
couple each of the one or more computing devices 500 to the
network 999. The storage 560 may store one or more of the
graph data 130, the query instructions 370, a control routine
540, expanded instructions 570 and the results data 730. The
control routine 540 may incorporate a sequence of instruc-
tions operative on the processor component 550 to implement
logic to perform various functions.

In executing the control routine 540, the processor compo-
nent 550 of one of the one or more computing devices 500
may operate the network interface 590 to receive at least the
graph data 130 from the one or more storage devices 100 and
to receive the query instructions 370 from the computing
device 300. In further executing the control routine 540, the
processor component 550 of that one of the one or more
computing devices 500 may interpret at least the expressions
within the query instructions 370 that convey the objective
function, the one or more side constraints, the mapping of
variables to nodes and/or edges of a graph, and the specifica-
tion of one or more graph-based algorithms, as well as the
description of a graph provided by the graph data 130, to
retrieve enough information about the MILP problem from
the query instructions 370 and the graph data 130 to decom-
pose the MILP problem into a master problem and one or
more subproblems using Dantzig-Wolfe decomposition,
Benders decomposition or another form of decomposition. In
so doing, the processor component 550 of that one of the one
or more computing devices 500 may generate the expanded
instructions 570 to include instructions executable by one or
more processor components to solve each of the master prob-

20

25

30

35

40

45

55

10

lem and the one or more subproblems. The processor com-
ponent 550 of that one of the one or more computing devices
500 may then store the expanded instructions 570 within its
associated storage 560 for subsequent retrieval and execution
to subsequently perform the iterations of solving the master
problem and the one or more subproblems of the MILP prob-
lem.

In a subsequent execution the control routine 540, the
processor component 550 of one of the one or more comput-
ing devices 500 may be caused to execute the expanded
instructions 570 in embodiments in which only one of the one
or more computing devices 500 is to be employed in solving
the MILP problem. However, in embodiments in which more
than one of the computing devices 500 is to be employed in
solving the MILP problem, the processor component 550 of
that one of the computing devices 500 may distribute at least
aportion of the expanded instructions 570 among one or more
others of the computing devices 500 to enable the processor
component(s) 550 thereof to each to execute at least that
portion. By way of example, where the MILP problem is
decomposed into a master problem and multiple subproblems
that have no dependencies thereamong as a result of none of
the subproblems requiring the solution of any of the other
subproblems to be solved, then portion of the expanded
instructions 570 made up of instructions to solve one or more
of the subproblems may be so distributed to enable the pro-
cessor component(s) 550 of each of multiple ones of the
computing devices 500 to solve a different one of the sub-
problems at least partly in parallel with other(s) of the com-
puting devices 500.

Regardless of whether the MILP problem is decomposed
into one or more than one subproblem, as previously dis-
cussed, solving the MILP problem entails multiple iterations
of alternating between solving the one or more subproblems
and solving the master problem to derive progressively better
solutions to minimize or maximize the value of a variable
specified by the objective function to be so minimized or
maximized. In each such iteration where there is more than
one subproblem to be solved and those subproblems are able
to be solved independently of each other, then multiple ones
of'the computing devices 500 may be employed to solve each
of'such multiple subproblems at least partly in parallel during
each iteration. Alternatively or additionally, where the pro-
cessor component 550 of one or more of the computing
devices 500 incorporates multiple processing cores or
another mechanism that enables multiple simultaneous
threads of execution, then multiple subproblems may be
solved at least partly in parallel during each such iteration
using such multiple threads of execution of one of the pro-
cessor components 550.

In executing the expanded instructions 570, if the graph
data 130 was not previously received from the computing
device 300 along with the query instructions 370, then the
processor component 550 of one or more of the computing
devices 500 may operate associated one(s) of the network
interface 590 to retrieve the graph data 130 from the one or
more storage devices 100 via the network 999. Upon solving
the MILP problem, the processor component 550 of one of
the one or more computing devices 500 may store an indica-
tion of the solution within its associated storage 560 as the
results data 730. The processor component 550 of that one of
the one or more computing devices 500 may then operate its
associated network interface 590 to transmit the results data
730 to one or more other computing devices, such as the
computing device 300 or the viewing device 700.

In some embodiments, the processor component 550 of at
least one of the one or more computing devices 500 may

US 9,213,550 B1

11

generate a visualization of the solution to the MILP problem
and may include that visualization in the results data 730. In
other embodiments, such a visualization may be generated by
one or more computing devices that receive the results data
730. By way of example, the viewing device 700 may gener-
ate such a visualization from the results data 730 and may
present that visualization on a display 780 of the viewing
device 700. Alternatively or additionally, the processor com-
ponent 350 of the computing device 300 may generate such a
visualization and may present that visualization on the dis-
play 380.

FIG. 1B illustrates a block diagram of an alternate example
embodiment of the MILP processing system 1000 featuring
an alternate embodiment of the computing device 300 or an
alternate embodiment of the one or more computing devices
500 storing the graph data 130 in lieu of the one or more
storage devices 100 of FIG. 1A doing so. Thus, in FIG. 1B,
such an alternate embodiment of the computing device 300
may provide the graph data 130 to the one or more computing
devices 500 to use in solving a MILP problem regardless of
whether the graph data 130 was earlier stored within the
storage 360 of the computing device 300 or received from an
operator of the computing device 300. Alternatively, in FIG.
1B, such an alternate embodiment of the one or more com-
puting devices 500 may already store the graph data 130
within the storage(s) 560 of the one or more computing
devices 500 such that retrieval from other device(s) is unnec-
essary and/or such that the one or more computing devices
500 may provide the graph data 130 to the computing device
300 to present on the display 380 to an operator of the com-
puting device 300.

FIG. 2 illustrates a block diagram of a portion of an
embodiment of the MILP processing system 1000. More
specifically, FIG. 2 depicts aspects of the operating environ-
ment of an embodiment of the computing device 300 in which
the processor component 350, in executing the control routine
340, may operate the controls 320 and/or the display 380 to
provide a user interface to an operator of the computing
device 300 by which the computing device 300 receives vari-
ous pieces of information required to solve a MILP problem.
As has been discussed, such information may be received as
result of the operator directly entering at least the portion of
the query instructions 370 that is made of up expressions in
the form of command instructions, declaration instructions
and/or other instructions that convey such information. How-
ever, as has also been discussed, the computing device 300
may prompt the operator through entering each of the pieces
of such information need to solve the MILP problem.

The control routine 340, including the components of
which itis composed, are selected to be operative on whatever
type of processor or processors that are selected to implement
the processor component 350. In various embodiments, the
control routine 340 may include one or more of an operating
system, device drivers and/or application-level routines (e.g.,
so-called “software suites” provided on disc media, “applets”
obtained from a remote server, etc.). Where an operating
system is included, the operating system may be any of a
variety of available operating systems appropriate for the
processor component 350. Where one or more device drivers
are included, those device drivers may provide support for
any of a variety of other components, whether hardware or
software components, of the computing device 300.

The control routine 340 may include a communications
component 349 executable by the processor component 350
to operate the network interface 390 to exchange communi-
cations via the network 999 as has been described. Among
such communications may be those conveying the graph data

10

15

20

25

30

35

40

45

50

55

60

65

12

130, the query instructions 370 and/or the results data 730
among the computing devices 100, 300, 500 and/or 700 via
the network 999. The communications component 349 may
be selected to be operable with whatever type of interface
technology is selected to implement the network interface
390.

The control routine 340 may include an editing component
342 executable by the processor component 350 to operate
the controls 320 and the display 380 to provide an operator of
the computing device 300 with a user interface made up of a
text entry and editing environment by which the operator may
directly enter at least a portion of the query instructions 370
expressing the information needed to solve a MILP problem.
By way of example, where the MILP problem to be solved is
a side-constrained shortest path (SP) problem, the editing
component 342 may enable the computing device 300 to
receive the direct entry of the following example of both the
graph data 130 and the query instructions 370:

Example of Graph Data 130 and Query
Instructions 370 for a SP Example

data arc_data;
input i j cost time;
datalines;
12110
13103
2411
2523
3212
3457
35123
45101
4617
5622

%let source
%let sink =6;
%let max_time = 14;
proc optmodel;
set <num,num> ARCS;
num cost {ARCS};
num time {ARCS};
read data arc_data into ARCS=[i] cost time;
set NODES = union {<i,j> in ARCS} {i,j};

num source = &source;
num sink = &sink;
num max_time = &max_time;

var Flow {ARCS} binary;
min TotalCost =
sum {<i,j> in ARCS} cost[i,j] * Flow[i,j];
con Side_con:
sum {<i,j> in ARCS} timef[i,j] * Flow[i,j] <= max_time;
/* solve using decomp, with network (SHORTPATH) subproblem */
con Balance:
path(Flow, source, sink, graph_direction=directed);
Balance.block = 0;
for {<i,j> in ARCS} do;
Flow[i,j].from = i;
Flow[i,j].to =];
end;
solve with MILP / decomp;
quit;

In this SP example, the query instructions 370 are written in
the SAS programming language promulgated by SAS Insti-
tute Inc. of Cary, N.C., in the United States. However, it
should be noted that other embodiments are possible in which
the query instructions 370 may be written in any of a variety
of other programming languages or combinations of pro-
gramming languages. In this SP example, the data values of
the graph data 130 are embedded within the query instruc-
tions 370 via the Data Step of the SAS Language, using the
“data arc_data;” and “datalines” statements, along with the

US 9,213,550 B1

13

depicted rows of numerical values. Following the embedded
data values of the graph data 130 are declarations of various
constants, including those indicating the starting and ending
nodes (e.g., the “source” and the “sink”) between which the
shortest path is to be found. Also, in this SP example, the ones
of the query instructions 370 expressing the information
needed to solve this example SP problem are set forth follow-
ing the “proc optmodel;” procedure statement. Although this
SP example is presented with the graph data 130 embedded
within the query instructions 370, the editing component 342
may alternatively enable the operator of the computing device
300 to supply an indication of where the graph data 130 may
beretrieved (e.g., a pointer to the graph data 130 as a separate
data structure or a network address enabling the retrieval of
the graph data 130 from the one or more storage devices 130).
Alternatively, the editing component 342 may simply enable
the operator to include instructions to access and retrieve the
graph data 130 as part of the query instructions 370.

As an alternative to or in addition to the editing component
342, the control routine 340 may include a guiding compo-
nent 341 executable by the processor component 350 to oper-
ate the controls 320 and the display 380 to provide an operator
of'the computing device 300 with a user interface made up of
prompts presented on the display 380 to enter pieces of the
information needed to solve a MILP problem. FIGS. 3A, 3B
and 3C depict a series of examples of such prompts presented
on the display 380.

Turning to FIG. 3A, a prompt 881 may be presented on the
display 380 to request an operator of the computing device
300 to either directly enter the graph data 130 or a pointer 371
to where the graph data 130 may be retrieved (e.g., either an
address pointer to where the graph data 130 is located within
the storage 360 or a network address pointing to the one or
more storage devices 160). The prompt 881 may also request
that the operator enter a label by which the data values of the
graph data 130 are referenced from within the query instruc-
tions 370 (e.g., the depicted label “arc_data). The prompt
881 may further request that the operator enter indications of
a graph data structure 372 of the graph data 130, where the
graph data structure 372 specifies the labels given to each of
the data values associated with each node and/or associated
with each edge of a graph, as well as the manner in which
those data values are organized to enable their retrieval and
use by the query instructions 370 to solve the MILP. As also
depicted in FIG. 3A, another prompt 882 may be presented on
the display 380 to request that the operator enter the labels and
values of any constants to be employed by the query instruc-
tions 370 (e.g., the label “max_time” specifying a constant
maximum measure of time, and the labels “source” and
“sink” specifying the constants identifying the starting and
ending nodes between which the shortest path is to be found).

Turning to FIG. 3B, a prompt 883 may be presented on the
display 380 to request that the operator enter any declarations
of variables and their data types, including any indices that
may be employed in accessing elements of an array, such as
the array “ARCS” made up of entries for “cost” and “time”
data values of the graph data 130 that are indexed by the “i”
and “j” data values that numerically identify the nodes at the
start and end of each of multiple edges. As also depicted in
FIG. 3B, another prompt 884 may be presented on the display
380 to request that the operator enter an objective function
375 and any side constraints 376 that define the MILP prob-
lem to be solved. In this SP example, the objective function
375 specifies the value of the variable “TotalCost” made up of
a sum of one or more “cost” data values associated with each
of'the edges identified by an associated pair of “i” and *j”” data
values is to be minimized. However, the objective function

10

15

20

25

30

35

40

45

50

55

60

65

14

375 is accompanied by a side constraint 376 specifying the
sum of the one or more “time” data values that are associated
with the ones of the “cost” data values included in the sum for
the variable “TotalCost” can be no greater than the constant
“max_time” specified earlier.

Turning to FIG. 3C, a separate prompt 889 corresponding
to each subproblem into which the MILP problem is to be
decomposed may be presented on the display 380 to request
that the operator make a graph-based algorithm selection 379
that specifies the graph-based algorithm to be applied to that
subproblem. As depicted, in some embodiments, the graph-
based algorithm selection 379 may be made from a listing of
multiple graph-based algorithms presented in a drop-down
menu (or other form of menu), and such a menu may include
the option of applying a math programming-based algorithm
(indicated as “MILP”) in lieu of any graph-based algorithm.
For this SP example, the graph-based algorithm that is
selected may be the one designated by the “path” predicate
that returns an indication of true or false depending on
whether or not a solution is found. The selection of a specific
graph-based algorithm to apply to solving a subproblem, may
provide an indication of various configuration selections,
including an indication of whether a data value associated
with an edge applies regardless of the direction in which the
edge is traversed (e.g., an undirected data value) or applies
only when the edge is traversed in one of the two possible
directions (e.g., a directed data value).

For each subproblem into which the MILP problem is to be
decomposed the associated prompt 889 may also request that
the operator enter a mapping function 378 that defines a
mapping between the nodes and/or edges used by the selected
graph-based algorithm and one or more of the variables of the
objective function 375 and/or the one or more side constraints
376. As depicted, the mapping function 378 may define a
manner of progressing through the data values of the graph
data 130 associated with the nodes and/or the edges of a
graph, such as the depicted “for” loop that causes the evalu-
ation of solutions to the subproblem to progress through the
“cost” and “time” values associated with each edge and
indexed through the set “ARCS” by the “i” and “” values
identifying the nodes at each end of each of those edges. In so
doing for each such edge, the “.from” and “.to” suffixes
specify which of the two nodes for each of those edges is the
starting node and which is the ending node in a one-way
direction of travel along that edge.

It should be noted that this SP example is a relatively
simple example provided herein for sake of illustration and
understanding, and should not be taken as providing an indi-
cation that what is described and taught herein is not appli-
cable to far more complex MILP problems. By way of
example, it is to be understood that what is described and
taught herein may be applied to a far more complex example
of'a SP problem in which there are far more nodes and edges,
and in which there may be numerous side constraints. Despite
the relative simplicity of this SP example, it can still be
appreciated that enabling the example SP problem to be
treated as a side-constrained graph problem, instead of a
MILP problem, is easier to understand without the same
relatively demanding level of training required to understand
MILP problems, and enables the information needed to solve
the SP problem to be presented to the computing device 300
in a simpler form. To further exemplify these points with
regard to this example SP problem, an example of the infor-
mation that would be needed to solve this example SP prob-

US 9,213,550 B1

15

lem while treating it as a MILP problem in accordance with
the prior art is provided below:

PRIOR ART Example of Instructions to
Solve a SP Example as a MILP Problem

proc optmodel;
set <num,num> ARCS;
num cost {ARCS};
num time {ARCS};
read data arc_data into ARCS=[i] cost time;
set NODES = union {<i,j> in ARCS} {i,j};

num source = &source;
num sink = &sink;
num max_time = &max_time;

var Flow {ARCS} binary;
min TotalCost =
sum {<i,j> in ARCS} cost[i,j] * Flow[i,j];
con Side_con:
sum {<i,j> in ARCS} time[i,j] * Flow[i,j] <= max_time;
/* explicitly declare flow balance constraints */
con Balance {i in NODES}:
sum {<(i),j> in ARCS} Flow[i,j]
- sum {<j,(i)> in ARCS} Flow[j,i]
= (if i = source then 1 else if i = sink then -1 else 0);
/* solve using decomp, with LP subproblem */
for {i in NODES} Balancel[i].block = 0;
solve with MILP / decomp;
quit;

The instructions in this PRIOR ART example are also written
in the SAS programming language promulgated by SAS
Institute Inc. In this PRIOR ART example, it can be seen that
an additional mathematical relationship for flow balance
must be explicitly expressed. Knowing that this needs to be
done for this PRIOR ART example requires some degree of
understanding of math programming-based algorithms in the
field of MILP problems on the part of an operator of the
computing device 300, and places an additional burden on
that operator.

Below is presented another example of the manner in
which the amount and complexity of what may must be
expressed in the query instructions 370 may be reduced is
presented in the following relatively simple example for a
side-constrained minimum spanning tree (MST) problem:

Example of Graph Data 130 and Query

Instructions 370 for a MST Example
data LinkSetIn;
input from § to $ weight @@;
datalines;

AB7ADSBC8BDY9BE7
CESDEISDF6EF8EG9
FGIIHIIII3HI2

;
data max_degree_data;
input node § max_degree;
datalines;

10

15

20

25

40

45

50

16

-continued

Example of Graph Data 130 and Query
Instructions 370 for a MST Example

E2

proc optmodel;
set <str,str> EDGES;
num weight {EDGES};
read data LinkSetIn into EDGES=[from to] weight;
set NODES = union {<i,j> in EDGES} {i,j};
num max_degree {NODES} init .;
read data max_degree_data into [node] max_degree;
var UseEdge {EDGES} binary;
min TotalWeight = sum {i,j> in EDGES} weight[i,j] * UseEdge[i,j];
con DegreeCon {i in NODES: max_degree[i] ne .}:
sum {<u,v> in EDGES: i in {u,v}} UseEdge[u,v] <=
max_degree[i];
/* solve using decomp, with network (MST) subproblem */
con ForestCon:
forest{i,j> in EDGES} UseEdgel[i,j]);
ForestCon.block = 0;
num id init 0;
num node_id {NODES};
for {i in NODES} do;
node_id[i] = id;
id=id+1;
end;
for {<i,j> in EDGES} do;
UseEdge[i,j].from = node_id[i];
UseEdge[i,j].to = mnode_id[j];
end;
solve with MILP / decomp;
quit;

In this MST example, the objective function 375 is specified
as minimizing the value of the variable “Total Weight” which
is specified as the sum of the “weight” data values associated
with one or more edges that are extending between pairs of
nodes identified with string values for the variables “i” and *§”
from the data values of the graph data 130. A single side
constraint 376 indirectly specifies that the maximum degree
of connectivity for the node designated as node “E”is 2 via a
reference in the “con DegreeCon” statement to the “max_de-
gree_data” of the graph data 130 where this one limit for the
node “E” is expressed. With relatively little else needing to be
specified in the query instructions 370 for this MST example,
the “forest” graph-based algorithm is specified to proceed
through each of the edges identified in the “LinkSetIn” por-
tion of the of the graph data 130 to derive a combination of
those edges that may be used to span all of the nodes while
minimizing the sum of the “weight” data values making up
the “TotalWeight”, and while meeting the single side con-
straint associated with the node “E”.

Therelatively minimal syntax of the query instructions 370
expressing a relatively minimal amount of information
needed to solve this MST example contrasts with the greater
amount of information required in the below PRIOR ART
example of instructions to solve this same side-constrained
MST problem as a MILP problem:

PRIOR ART Example of Instructions to Solve a MST Example as a MILP Problem

proc optmodel;

set <str,str> EDGES;

num weight {EDGES};

read data LinkSetIn into EDGES=[from to] weight;
set NODES = union {<i,j> in EDGES} {i,j};

num max_degree {NODES} init .;

read data max_degree_data into [node] max_degree;

US 9,213,550 B1
17

-continued

PRIOR ART Example of Instructions to Solve a MST Example as a MILP Problem

var UseEdge {EDGES} binary;
min TotalWeight = sum {<i,j> in EDGES} weight[i,j] * UseEdgel[i,i];
con DegreeCon {i in NODES: max_degree[i] ne .}:

sum {<u,v> in EDGES: i in {u,v}} UseEdge[u,v] <= max_degree[i];
/* find connected components, and explicitly declare flow balance

constraints for each connected component */
num component {NODES};
solve with network / concomp nodes=(include=NODES)

links=(include=EDGES) out=(concomp=component);

set COMPONENTS = setof {i in NODES} component[i];
set NODES_c {c in COMPONENTS} = {i in NODES: component[i] = c};
str source { COMPONENTS};
for {c in COMPONENTS} do;

for {i in NODES_c[c]} do;

source[c] = i;
leave;

end;
end;
set ARCS = union {<i,j> in EDGES} {<i,j><j,i>};
set COMMODITIES {c in COMPONENTS} = NODES_c[c] diff {source[c]};
var Flow {c in COMPONENTS, ARCS, COMMODITIES[c]} >=0 <= ;
con Link {c in COMPONENTS, <i,j> in EDGES, k in COMMODITIES[c]}:

Flow[c,i,j,k] + Flow[c,j,i,k] <= UseEdge[i,j];
con FlowBalance {c in COMPONENTS, i in NODES_c[c], k in COMMODITIES[c] }:

18

sum {<(i),j> in ARCS} Flow[c,i,j,k] -
sum {<j,(i)> in ARCS} Flow[c,j,i,k]
= (if i = source[c] then 1 else if i = k then -1 else 0);

/* solve using decomp, with MILP subproblem */

for {c in COMPONENTS, <i,j> in EDGES, k in COMMODITIES[c]}
Link [c,i,j,k].block =¢;

for {c in COMPONENTS, i in NODES_c[c], k in COMMODITIES|[c]}
FlowBalance[c,i,k].block = c¢;

solve with MILP / decomp;

quit;

In particular, in the instructions in this PRIOR ART example,
it can be seen that an additional preprocessing step must be
performed, and numerous auxiliary variables and constraints
must be expressed in preparation for invoking the use of a
math programming-based algorithm to derive a solution.
Again, knowing that there is a need to include such additional
processing and to set forth such additional variables and
constraints requires a great degree of understanding of the
field of MILP problems.

Returning to FIG. 2, the control routine 340 may include a
rendering component 348 executable by the processor com-
ponent 350 to operate the display 380 to present a visualiza-
tion of the solution of a MILP problem as indicated in the
results data 730 received from one of the one or more com-
puting devices 500. In some embodiments, the results data
730 may indicate the solution of a MILP problem in a manner
that does not include a visualization, and the rendering com-
ponent 348 may employ that indication in generating a visu-
alization to present on the display 380. In other embodiments,
the results data 730 may include a visualization already gen-
erated by at least one of the one or more computing devices
500, and the rendering component 348 may present that visu-
alization on the display 380 either with or without modifica-
tion (e.g., resizing, a change of coloring, etc.).

FIG. 4 illustrates a block diagram of a portion of an
embodiment of the MILP processing system 1000. More
specifically, FIG. 4 depicts aspects of the operating environ-
ment of an embodiment of one of the computing devices 500
in which the processor component 550, in executing the con-
trol routine 540, may interpret the query instructions 370 to
generate the expanded instructions 570 in which a MILP
problem treated as a side-constrained graph problem in the
query instructions 370 is decomposed into a master problem

35

40

45

55

60

65

and one or more subproblems. FIG. 4 also depicts aspects of
the processor component 550 of at least one of the computing
devices 500 executing the expanded instructions 570 to solve
the master problem and the one or more subproblems follow-
ing decomposition.

The control routine 540, including the components of
which itis composed, are selected to be operative on whatever
type of processor or processors that are selected to implement
the processor component 550 of each of the one or more
computing devices 500. As with the control routine 340, in
various embodiments, the control routine 540 may include
one or more of an operating system, device drivers and/or
application-level routines (e.g., so-called “software suites”
provided on disc media, “applets” obtained from a remote
server, etc.). Where an operating system is included, the oper-
ating system may be any of a variety of available operating
systems appropriate for the processor component 550. Where
one or more device drivers are included, those device drivers
may provide support for any of a variety of other components,
whether hardware or software components, of each of the
computing devices 500.

The control routine 540 may include a communications
component 549 executable by the processor component 550
to operate the network interface 590 to exchange communi-
cations via the network 999 as has been described. Among
such communications may be those conveying the graph data
130, the query instructions 370 and/or the results data 730
among the computing devices 100, 300, 500 and/or 700 via
the network 999. The communications component 549 may
be selected to be operable with whatever type of interface
technology is selected to implement the network interface
590.

The control routine 540 may include a decomposition com-
ponent 543 executable by the processor component 550 of at

US 9,213,550 B1

19

least one of the one or more computing devices 500 to inter-
pret the query instructions 370 to retrieve pieces of informa-
tion therefrom to solve a MILP problem, to decompose the
MILP problem and to generate the expanded instructions 570
to include executable instructions to solve the master problem
and the one or more subproblems generated by the decompo-
sition to complete the solving of the MILP problem. More
specifically, the decomposition component 543 retrieves indi-
cations of at least a pointer to the graph data 130 (or the graph
data 130, itself), the graph data structure 372, the objective
function 375, one or more side constraints 376, one or more
mapping functions 378 and one or more graph-based algo-
rithm selections 379.

Following the retrieval of such pieces of information, the
decomposition component 543 may apply Dantzig-Wolfe
decomposition, Benders decomposition or another form of
decomposition also known to those skilled in the field of
MILP problems to the MILP problem that is expressed in the
query instructions 370 as a side-constrained graph problem to
decompose the MILP problem into a master problem and one
or more subproblems that are each to be solved using a graph-
based algorithm. More specifically, and as depicted in FIG. 5,
the decomposition component 543 may include a master
problem component 544 that interprets the objective function
375 and the one or more side constraints 376 as expressed in
the query instructions 370 as part of generating master prob-
lem instructions 574 within the expanded instructions 570
that are executable by the processor component 550 of at least
one of the computing devices 500 to solve the master prob-
lem. As also depicted in FIG. 5, the decomposition compo-
nent 543 may also include a subproblem component 548 that
interprets the one or more mapping functions 378 and the one
or more graph-based algorithm selections 379 as expressed in
the query instructions 370 as part of generating correspond-
ing one or more subproblem instructions 578 that are
executed by the processor component 550 of at least one of
the computing devices 500 to solve the corresponding one or
more subproblems.

Turning to FIG. 6, the subproblem component 548 may, in
turn, include a subproblem instruction generator 5489 to per-
form the work of generating the one or more subproblem
instructions 579 within the expanded instructions 570 for
solving the corresponding one or more subproblems. In so
doing, the subproblem instruction generator 5489 may embed
the pointer 371 to the graph data 130 or at least a portion of the
graph data 130, itself, into one or more of the subproblem
instructions 579. In some embodiments, the subproblem
instruction generator 5489 may retrieve from the algorithm
database 530 implementation instructions from which to gen-
erate an appropriate set of the subproblem instructions 579
for each one of the graph-based algorithms that are selected to
be applied to a subproblem. In such embodiments, the algo-
rithm database 530 may contain multiple sets of per algorithm
data 539 in which each piece of per algorithm data 539
includes a set of instructions specifically generated to imple-
ment a corresponding specific graph-based algorithm. In
other embodiments, the subproblem instruction generator
5489 may retrieve from the algorithm database 530 imple-
mentation parameters to use in configuring a more generic
form of graph-based algorithm to be operable as an appropri-
ate specialized form of graph-based algorithm from which an
appropriate set of subproblem instructions 579 may be gen-
erated. In such embodiments, the algorithm database 530 may
contain multiple sets of per algorithm data 539 that each
include a set of constraints specifically generated to configure
the generic form of graph-based algorithm to function as a
corresponding specific graph-based algorithm.

30

40

45

20

As previously discussed, where a MILP problem is decom-
posed into more than one subproblem, those subproblems
may lack dependencies thereamong such that they may be
solvable at least partly in parallel. In some embodiments, the
one or more mapping functions 378 that correspond to each of
one or more subproblems may include an expression indicat-
ing the lack of a dependency by each subproblem on a result
from solving any of the other subproblems (e.g., the depicted
“block” suffix). The subproblem component 548 may addi-
tionally include a parallelization detector 5488 to determine
whether each of the one or more mapping functions 378 (or
some other portion of the query instructions 370) includes an
indication of such a lack of dependencies among multiple
subproblems. Upon detecting such an indication, the paral-
lelization detector 5488 may convey that indication to the
subproblem instruction generator 5489, and the subproblem
instruction generator 5489 may generate multiple ones of the
subproblem instructions 579 in a manner amenable to being
executed at least partly in parallel in response. Turning to
FIG. 7, the master problem component 544 may, in turn,
include a master problem instruction generator 5444 to per-
form the work of generating the master problem instructions
574 within the expanded instructions 570 for solving the
master problem. In so doing, the master problem instruction
generator 5444 may embed the pointer 371 to the graph data
130 or at least a portion of the graph data 130, itself, into the
master problem instructions 574. Again, as previously dis-
cussed, where a MILP problem is decomposed into more than
one subproblem, those subproblems may lack dependencies
thereamong such that they may be solvable at least partly in
parallel. Where the parallelization detector 5488 of the sub-
problem component 548 determines that there is a lack of
dependencies among multiple subproblems, the paralleliza-
tion detector 5488 may convey that indication to the master
problem instruction generator 5444, and the master problem
instruction generator 5444 may generate the master problem
instructions 574 to interact with multiple ones of the subprob-
lem instructions 579 in a manner that accommodates the at
least partly parallel execution thereof.

Returning to FIG. 5, in some embodiments, the expanded
instructions 570 may be generated by altering the query
instructions 370, thereby more easily allowing other instruc-
tions unrelated to the solving of a MILP problem to be carried
over to the expanded instructions 570. More specifically, the
decomposition component 543 may replace the expressions
of the objective function 375 and the side constraints 376
within the query instructions 370 with the master problem
instructions 574. The decomposition component 543 may
also replace the expressions of the one or more mapping
functions 378 and the one or more graph-based algorithm
selections 379 within the query instructions 370 with a cor-
responding one or more subproblem instructions 578. In this
way, the expressions of the graph data 130, the pointer 371
and/or the graph data structure 372 may be carried over to the
expanded instructions 570 without the performance of copy
operations.

Below is presented an example of the manner in which
there may be an indication in the query instructions 370 that
multiple subproblems into which a MILP problem may be
decomposed do not have dependencies thereamong such that
they may be solved at least partly in parallel. Specifically, an
example of a kidney exchange problem is presented:

US 9,213,550 B1

21

22

Example of Graph Data 130 and Query Instructions
370 for a Kidney Exchange Example

data ArcData;

input i j weight @@;

datalines;
010.97009 02 0.25940 0 7 0.06657 1 2 0.95702 1 3 0.27261
160.68824 17 0.55855 1 80.47579240.72836 2 9 0.39104
300.67953310.16653 34 0.93464 37 0.13559 3 90.17611
410.12455420.19955 4 6 0.04937 4 8 0.02271 51 0.94694
530.17517 54 0.61486 5 6 0.07174 57 0.71143 5 8 0.14797
600.32520 62 0.43921 6 9 0.33133 71 0.18067 7 2 0.65321
730.03798 74 0.42773 79 0.30602 8 0 0.34905 8 6 0.64565
920.02544 9 5 0.85339 9 6 0.37732

%let max_length = §;
proc optmodel;

set <num,num> ARCS;

num weight {ARCS};

read data ArcData into ARCS=[i j] weight;

set NODES = union {<i,j> in ARCS} {i,j};

set MATCHINGS = 1..card(NODES)/2;

/* UseNode[i,m] = 1 if node i is used in matching m, O otherwise */

var UseNode {NODES, MATCHINGS} binary;

/* UseArc[i,j,m] =1 if arc (i,j) is used in matching m, O otherwise */

var UseArc {ARCS, MATCHINGS} binary;

/* maximize total weight of arcs used */

max TotalWeight
=sum {<i,j> in ARCS, m in MATCHINGS } weight[i,j] *
UseArc[i,j,m];

/* each node appears in at most one matching */

/* rewrite as set partitioning (so decomp uses identical blocks)
sum{ } x <= 1 =>sum{ } x + s = 1, s >= 0 with no associated
cost */

var Slack {NODES} binary;

con Packing {i in NODES}:
sum {m in MATCHINGS} UseNode[i,m] + Slack[i] = 1;

/* solve using decomp, with network (CYCLE) subproblem */

con CycleCon {m in MATCHINGS}:
cycle({<i,j> in ARCS} UseArc[i,j,m], minlength=2,

maxlength=&max_length, graph_direction=directed);

for {m in MATCHINGS} CycleCon[m].block = m;

set CYCLES = 1..card(NODES)/2;

num n = card(NODES);

num node_id {1 in NODES, ¢ in CYCLES} = i+(c-1)*n;

for {i in NODES, ¢ in CYCLES}

UseNode[i,c].node = node_id[i,c];
for {<i,j> in ARCS, ¢ in CYCLES} do;

UseArcl[i,j,¢].from = node_id[i,c];

UseArc[i,j,c].to = node_id[j,c];
end;

solve with MILP / decomp;

quit;

Inthis kidney exchange problem example, mapping functions
are set forth for a set of subproblems. Specifically, thereis one
mapping of the decision variable UseNode[i,c] to the nodes of
a graph via the “.node” suffix, within a “for” loop, and there
is another mapping of the decision variable UseArc[i,j,c] to
the edges of the same graph that each have a head node
specified by node_id[j,c] via the “.to” suffix and a tail node
specified by node_id[i,c] via the “ from” suffix within another
“for” loop. A “.block” suffix indicates that these multiple
subproblems are each not dependent upon the results of solv-
ing the others such that they may be solved at least partly in
parallel.

As can be seen, expressing this example kidney problem as
a side-constrained graph problem results in a less complex
expression than in the instructions in the below PRIOR ART
example of instructions to solve this same kidney problem as
a MILP problem:

10

15

20

25

30

35

40

45

PRIOR ART Example of Instructions to Solve
a Kidney Exchange Example as a MILP Problem

proc optmodel;

set <num,num> ARCS;

num weight {ARCS};

read data ArcData into ARCS=[i j] weight;

set NODES = union {<i,j> in ARCS} {i,j};

set MATCHINGS = 1..card(NODES)/2;

/* UseNode[i,m] = 1 if node i is used in matching m, O otherwise */

var UseNode {NODES, MATCHINGS} binary;

/* UseArc[i,j,m] = 1 if arc (i,j) is used in matching m, O otherwise */

var UseArc {ARCS, MATCHINGS} binary;

/* maximize total weight of arcs used */

max TotalWeight
= sum {<i,j> in ARCS, m in MATCHINGS} weight [i,j] *
UseArc[i,j,m];

/* each node appears in at most one matching */

/* rewrite as set partitioning (so decomp uses identical blocks)
sum{ } x <=1=>sum{ } x +s = 1, s >= 0 with no associated
cost */

var Slack {NODES} binary;

con Packing {i in NODES}:
sum {m in MATCHINGS} UseNode[i,m] + Slack[i] = 1;

/* at most one recipient for each donor */

con Donate {i in NODES, m in MATCHINGS}:
sum {<(i),j> in ARCS} UseArc[i,j,m] = UseNode[i,m];

/* at most one donor for each recipient */

con Receive {j in NODES, m in MATCHINGS }:
sum {<i,(j)> in ARCS} UseArcli,j,m] = UseNode[j,m];

/* exclude long matchings */

con Cardinality {m in MATCHINGS}:
sum {<i,j> in ARCS} UseArc[i,j,m] <= &max_length;

/* solve using decomp, with MILP subproblem */

for {i in NODES, m in MATCHINGS} Donate[i,m].block = m;

for {j in NODES, m in MATCHINGS} Receive[j,m].block = m;

for {m in MATCHINGS} Cardinality[m].block = m;

solve with milp / presolver=basic decomp;

quit;

In particular, solving this PRIOR ART example as a MILP
problem entails the use of three sets of constraints vs. a single
set of predicate constraints as a result of solving using a
graph-based algorithm. Overall, as these examples illustrate,
expressing a MILP problem in the query instructions 370 as a
side-constrained graph problem reduces the level of under-
standing of the field of MILP problems required to generate
the query instructions 370. Additionally, the processing
demands of solving one or more subproblems with graph-
based algorithms required of one or more of the processor
components 550 is considerably reduced such that less time is
required to solve each MILP problem, thereby enabling the
one or more computing devices 500 to more quickly proceed
through solving multiple MILP problems in less time. This
contributes to quicker solution as result of using a graph-
based algorithm.

Returning to FIG. 4, the control routine 540 may include an
execution control component 545 executable by the processor
component 550 of at least one of the one or more computing
devices 500 to execute the expanded instructions 570 to solve
the master problem and the one or more subproblems of the
MILP problem following its decomposition by which the
expanded instructions 570 were generated. More specifically,
the execution control component 545 at least controls the
execution of the master program instructions 574 and the one
or more subproblem instructions 578 through multiple itera-
tions to complete the solving of the MILP problem.

Turning to FIG. 8A, within a single one of the computing
devices 500, the execution control component 545 may
include an execution coordination component 5454 to coor-
dinate the alternating executions of the master problem
instructions 574 and the one or more subproblem instructions
578 through each of multiple iterations until the solution of

US 9,213,550 B1

23

the MILP problem is derived in a final iteration. As also
depicted in FIG. 8A, the execution control component 545
may include a parallel execution component 5458 to coordi-
nate the at least partly parallel execution of multiple ones of
the subproblem instructions 578 where there are multiple
subproblems that do not have dependencies thereamong such
that at least partial parallel execution of the multiple subprob-
lems is possible. As further depicted in FIG. 8 A, such parallel
execution of multiple subproblem instructions 578 may be
performed by the processor component 550 of a single one of
the computing devices 500 where the processor component
550 includes multiple cores and/or other support for parallel
threads of execution.

However, as previously discussed and turning to FIG. 8B,
where there are multiple subproblems that are able to be
solved at least partly in parallel during each iteration, the
execution of the multiple subproblem instructions 578 may be
distributed among the processor components 550 of multiple
ones of the computing devices 500 to effect such at least
partial parallel execution thereof. More specifically, the mas-
ter problem instructions 574 may be executed in one of the
computing devices 500 designated as computing device 500a
under the control of the execution control component 545
therein. Within the computing device 500a, the execution
coordination component 5454 and the parallel execution
component 5458 may cooperate to coordinate execution of
the master problem instructions 574 within each iteration
with the execution of multiple ones of the subproblem
instructions 578 within each of multiple others of the com-
puting devices 500 designated as computing devices 5005
through 500x. Within each of the computing devices 5005-x,
the execution coordination component 5454 may indepen-
dently coordinate the execution of one of the subproblem
instructions 578 within that one of the computing devices
5005-x and within each iteration with the execution of the
master problem instructions 574 within the computing device
500a.

Returning to FIG. 4, regardless of whether one or more
than one of the computing devices 500 is employed in execut-
ing portions of the expanded instructions 570 to solve a MILP
problem, the execution control component 545 may store an
indication of the solution within the storage 560 of at least one
of the computing devices 500 as the results data 730. As has
been discussed, the results data 730 may or may not be gen-
erated to include a visualization of the solution before being
transmitted to one or more other computing devices, such as
the computing device 300 or the viewing device 700.

Returning to FIGS. 1A and 1B, the processor component
550 of each of the one or more computing devices 500 may be
selected to efficiently solve multiple subproblems into which
a MILP problem may be decomposed at least partly in parallel
to speed the solution of each of the subproblems in each
iteration. By way of example, the processor component 550
may incorporate a single-instruction multiple-data (SIMD)
architecture, may incorporate multiple processing pipelines,
and/or may incorporate the ability to support multiple simul-
taneous threads of execution per processing pipeline. Alter-
natively or additionally, and as has been discussed, the solu-
tion of multiple subproblems at least partly in parallel may be
carried out by multiple ones of the computing devices 500
operating at least partly in parallel with each other.

Each of these computing devices may be any of a variety of
types of computing device that incorporates at least the pro-
cessing resources to enable efficient decomposition of a
MILP problem into a master problem and one or more sub-
problems. Each of these computing devices may be any of a
variety of types of computing device that incorporates at least

30

40

45

24

the processing resources to enable efficient performance of
iterations of alternating between solving the master problem
and the one or more subproblems.

Invarious embodiments, each of the processor components
350 and 550 may include any of a wide variety of commer-
cially available processors. Further, one or more of these
processor components may include multiple processors, a
multi-threaded processor, a multi-core processor (whether
the multiple cores coexist on the same or separate dies),
and/or a multi-processor architecture of some other variety by
which multiple physically separate processors are linked.

In various embodiments, each of the storages 360 and 560
may be based on any of a wide variety of information storage
technologies, including volatile technologies requiring the
uninterrupted provision of electric power, and/or including
technologies entailing the use of machine-readable storage
media that may or may not be removable. Thus, each of these
storages may include any of a wide variety of types (or com-
bination of types) of storage device, including without limi-
tation, read-only memory (ROM), random-access memory
(RAM), dynamic RAM (DRAM), Double-Data-Rate DRAM
(DDR-DRAM), synchronous DRAM (SDRAM), static
RAM (SRAM), programmable ROM (PROM), erasable pro-
grammable ROM (EPROM), electrically erasable program-
mable ROM (EEPROM), flash memory, polymer memory
(e.g., ferroelectric polymer memory), ovonic memory, phase
change or ferroelectric memory, silicon-oxide-nitride-oxide-
silicon (SONOS) memory, magnetic or optical cards, one or
more individual ferromagnetic disk drives, or a plurality of
storage devices organized into one or more arrays (e.g., mul-
tiple ferromagnetic disk drives organized into a Redundant
Array of Independent Disks array, or RAID array). It should
be noted that although each of these storages is depicted as a
single block, one or more of these may include multiple
storage devices that may be based on differing storage tech-
nologies. Thus, for example, one or more of each of these
depicted storages may represent a combination of an optical
drive or flash memory card reader by which programs and/or
data may be stored and conveyed on some form of machine-
readable storage media, a ferromagnetic disk drive to store
programs and/or data locally for a relatively extended period,
and one or more volatile solid state memory devices enabling
relatively quick access to programs and/or data (e.g., SRAM
or DRAM). It should also be noted that each of these storages
may be made up of multiple storage components based on
identical storage technology, but which may be maintained
separately as a result of specialization in use (e.g., some
DRAM devices employed as a main storage while other
DRAM devices employed as a distinct frame buffer of a
graphics controller).

In various embodiments, the network interfaces 390 and
590 may employ any of a wide variety of communications
technologies enabling these computing devices to be coupled
to other devices as has been described. Each of these inter-
faces includes circuitry providing at least some of the requi-
site functionality to enable such coupling. However, each of
these interfaces may also be at least partially implemented
with sequences of instructions executed by corresponding
ones of the processor components (e.g., to implement a pro-
tocol stack or other features). Where electrically and/or opti-
cally conductive cabling is employed, these interfaces may
employ timings and/or protocols conforming to any of a
variety of industry standards, including without limitation,
RS-232C, RS-422, USB, Ethernet (IEEE-802.3) or IEEE-
1394. Where the use of wireless transmissions is entailed,
these interfaces may employ timings and/or protocols con-
forming to any of a variety of industry standards, including

US 9,213,550 B1

25

without limitation, IEEE 802.11a, 802.11b, 802.11g, 802.16,
802.20 (commonly referred to as “Mobile Broadband Wire-
less Access”™); Bluetooth; ZigBee; or a cellular radiotele-
phone service such as GSM with General Packet Radio Ser-
vice (GSM/GPRS), CDMA/1xRTT, Enhanced Data Rates for
Global Evolution (EDGE), Evolution Data Only/Optimized
(EV-DO), Evolution For Data and Voice (EV-DV), High
Speed Downlink Packet Access (HSDPA), High Speed
Uplink Packet Access (HSUPA), 4G LTE, etc.

FIG. 9 illustrates an example embodiment of a logic flow
2100. The logic flow 2100 may be representative of some or
all of the operations executed by one or more embodiments
described herein. More specifically, the logic flow 2100 may
illustrate operations performed by the processor component
350 in executing the control routine 340, and/or performed by
other component(s) of at least the computing device 300.

At 2110, a processor component of a computing device
(e.g., the processor component 350 of the computing device
300) may present a visual prompt on a display of the comput-
ing device (e.g., the display 380) requesting an operator of the
computing device to enter graph data or a pointer to the graph
data for a MILP problem (e.g., the graph data 130 or the
pointer 371). At 2112, the processor may monitor manually-
operable controls of the computing device (e.g., the controls
320) for an indication of those controls being manually oper-
ated to receive the graph data or the pointer thereto.

At 2120, the processor component may present a visual
prompt on the display requesting the operator to enter an
objective function and one or more side constraints. At 2122,
the processor may monitor manually-operable controls for an
indication of those controls being manually operated to
receive the objective function and the one or more side con-
straints.

At 2130, the processor component may present a visual
prompt on the display requesting the operator to enter a map-
ping function for a subproblem into which the MILP problem
is to be decomposed. At 2132, the processor may monitor
manually-operable controls for an indication of those con-
trols being manually operated to receive the mapping func-
tion.

At 2140, the processor component may present a visual
prompt on the display that includes an assortment of graph-
based algorithms able to be selected to solve the subproblem,
and that requests the operator to make a selection from among
the assortment. At 2142, the processor may monitor manu-
ally-operable controls for an indication of those controls
being manually operated to receive an indication of which
graph-based algorithm is selected by the operator.

At2150, a check may be made by the processor component
of whether there is another subproblem for which a mapping
and a graph-based algorithm need to be specified. If not, then
the processor component, at 2152, may generate query
instructions that include expressions of the objective func-
tion, the one or more side constraints, and both at least one
mapping and at least one selection ofa graph-based algorithm
corresponding to atleast one subproblem. However, if there is
another subproblem for which a mapping and a graph-based
algorithm need to be specified at 2150, then the presentation
of visual prompt to enter a mapping function is repeated at
2130.

FIG. 10 illustrates an example embodiment of a logic flow
2200. The logic flow 2200 may be representative of some or
all of the operations executed by one or more embodiments
described herein. More specifically, the logic flow 2200 may
illustrate operations performed by the processor component
550 of one of the one or more computing devices 500 in

10

15

20

25

30

35

40

45

50

55

60

65

26

executing the control routine 540, and/or performed by other
component(s) of that one of the one or more computing
device 500.

At 2210, a processor component of a computing device
(e.g., the processor component 550 of one of the one or more
computing devices 500) may receive query instructions to
solve a MILP problem in which the query instructions present
the MILP problem as a side-constrained graph problem. More
specifically, the query instructions may include syntax in the
form of commands, declarations and/or other instructions
expressing an objective function, one or more side con-
straints, and both a mapping and a selection of a graph-based
algorithm for each subproblem.

At 2220, as part of decomposing the MILP problem, the
processor component may replace the expressions of the
objective function and the one or more side constraints with
instructions for solving the master problem. Correspondingly
and also as part of decomposing the MILP problem, at 2230,
the processor component may replace the expressions of a
mapping and a selection of a graph-based algorithm for each
subproblem with instructions for applying that specified
graph-based algorithm and that mapping to solve that sub-
problem.

At 2240, the processor component may, in each of multiple
iterations that continue until the solving of the MILP problem
is completed, alternately execute the instructions for solving
the master problem and execute the instructions for solving
the one or more subproblems. As has been discussed, the
MILP problem may be decomposed into more than one sub-
problem and those subproblems that may not have dependen-
cies thereamong such that those subproblems are able to be
solved at least partly in parallel. Where this is the case, the
processor component may so solve multiple subproblems at
least partly in parallel in each iteration.

At 2250, following the solution of the MILP problem, the
processor component may generate a visualization of the
solution to the MILP problem. The processor component may
then display that visualization on a display at 2260 or transmit
that visualization to another computing device to enable the
visualization to be displayed on a display of that other com-
puting device (e.g., the display 380 of the computing device
300, or the display 780 of the viewing device 700).

FIG. 11 illustrates an example embodiment of a logic flow
2300. The logic flow 2300 may be representative of some or
all of the operations executed by one or more embodiments
described herein. More specifically, the logic flow 2300 may
illustrate operations performed by the processor component
550 of one of the one or more computing devices 500 in
executing the control routine 540, and/or performed by other
component(s) of that one of the one or more computing
device 500.

At 2310, 2320 and 2330, a processor component of a com-
puting device (e.g., the processor component 550 of one of the
one or more computing devices 500) may perform various
actions that are quite similar to what is described at 2210,
2220 and 2230 of the logic flow 2200, above. Such actions
may be performed as part of decomposing a MILP problem
into a master problem and multiple subproblems.

At 2340, the processor component may distribute the
instructions to solve each of the multiple subproblems sepa-
rately to each of multiple other computing devices to enable
the multiple other computing devices to solve their associated
ones of the multiple subproblems at least partly in parallel.
Again, doing so requires that the multiple subproblems not
have any dependencies on the solutions derived by any of the
other subproblems.

US 9,213,550 B1

27

At2350, the processor component may, in each of multiple
iterations that continue until the MILP problem is solved,
alternately execute the instructions for solving the master
problem and coordinate the execution of the instructions for
separately solving each of the multiple subproblems by each
of the multiple other computing devices. As part of such
coordination, the processor component may trigger such
separate executions of instructions for solving each of the
multiple subproblems to occur at least partly in parallel.

At 2360, following the solution of the MILP problem, the
processor component may generate a visualization of the
solution to the MILP problem. The processor component may
then display that visualization on a display at 2370 or transmit
that visualization to another computing device to enable the
visualization to be displayed on a display of that other com-
puting device (e.g., the display 380 of the computing device
300, or the display 780 of the viewing device 700).

FIG. 12 illustrates an example embodiment of a processing
architecture 3000 suitable for implementing various embodi-
ments as previously described. More specifically, the pro-
cessing architecture 3000 (or variants thereof) may be imple-
mented as part of one or more of the computing devices
300a-e, 500 or 700, or the controller 600. It should be noted
that components of the processing architecture 3000 are given
reference numbers in which the last two digits correspond to
the last two digits of reference numbers of at least some of the
components earlier depicted and described as part of the
computing devices 300, 500 and 700, as well as the controller
600. This is done as an aid to correlating components of each.

The processing architecture 3000 includes various ele-
ments commonly employed in digital processing, including
without limitation, one or more processors, multi-core pro-
cessors, CO-processors, memory units, chipsets, controllers,
peripherals, interfaces, oscillators, timing devices, video
cards, audio cards, multimedia input/output (I/O) compo-
nents, power supplies, etc. As used in this application, the
terms “system” and “component” are intended to refer to an
entity of a computing device in which digital processing is
carried out, that entity being hardware, a combination of
hardware and software, software, or software in execution,
examples of which are provided by this depicted exemplary
processing architecture. For example, a component can be,
but is not limited to being, a process running on a processor
component, the processor component itself, a storage device
(e.g., a hard disk drive, multiple storage drives in an array,
etc.) that may employ an optical and/or magnetic storage
medium, an software object, an executable sequence of
instructions, a thread of execution, a program, and/or an
entire computing device (e.g., an entire computer). By way of
illustration, both an application running on a server and the
server can be a component. One or more components can
reside within a process and/or thread of execution, and a
component can be localized on one computing device and/or
distributed between two or more computing devices. Further,
components may be communicatively coupled to each other
by various types of communications media to coordinate
operations. The coordination may involve the uni-directional
or bi-directional exchange of information. For instance, the
components may communicate information over the commu-
nications media. The information can be implemented as
transmissions allocated to one or more electrical and/or opti-
cal conductors. A message (including a command, status,
address or data message) may be one of such transmissions or
may be a plurality of such transmissions, and may be trans-
mitted either serially or substantially in parallel through any
of a variety of connections and/or interfaces.

10

15

20

25

30

35

40

45

50

55

60

65

28

As depicted, in implementing the processing architecture
3000, a computing device includes at least a processor com-
ponent 950, a storage 960, an interface 990 to other devices,
and a coupling 959. As will be explained, depending on
various aspects of a computing device implementing the pro-
cessing architecture 3000, including its intended use and/or
conditions of use, such a computing device may further
include additional components, such as without limitation, a
touch screen 980 incorporating a display interface 985.

The coupling 959 includes one or more buses, point-to-
point interconnects, transceivers, buffers, crosspoint
switches, and/or other conductors and/or logic that commu-
nicatively couples at least the processor component 950 to the
storage 960. Coupling 959 may further couple the processor
component 950 to one or more of the interface 990, the audio
subsystem 970 and the display interface 985 (depending on
which of these and/or other components are also present).
With the processor component 950 being so coupled by cou-
plings 955, the processor component 950 is able to perform
the various ones of the tasks described at length, above, for
whichever one(s) of the aforedescribed computing devices
implement the processing architecture 3000. Coupling 959
may be implemented with any of a variety of technologies or
combinations of technologies by which commands and/or
data are optically and/or electrically conveyed. Further, at
least portions of couplings 955 may employ timings and/or
protocols conforming to any of a wide variety of industry
standards, including without limitation, Accelerated Graph-
ics Port (AGP), CardBus, Extended Industry Standard Archi-
tecture (E-ISA), Micro Channel Architecture (MCA),
NuBus, Peripheral Component Interconnect (Extended)
(PCI-X), PCI Express (PCI-E), Personal Computer Memory
Card International Association (PCMCIA) bus, HyperTrans-
port™, QuickPath, and the like.

As previously discussed, the processor component 950
(corresponding to one or more of the processor components
550, 650 and 750) may include any of a wide variety of
commercially available processors, employing any of a wide
variety of technologies and implemented with one or more
cores physically combined in any of a number of ways.

As previously discussed, the storage 960 (corresponding to
one or more of the storages 560, 660 and 760) may be made
up of one or more distinct storage devices based on any of a
wide variety oftechnologies or combinations oftechnologies.
More specifically, as depicted, the storage 960 may include
one or more of a volatile storage 961 (e.g., solid state storage
based on one or more forms of RAM technology), a non-
volatile storage 962 (e.g., solid state, ferromagnetic or other
storage not requiring a constant provision of electric power to
preserve their contents), and a removable media storage 963
(e.g., removable disc or solid state memory card storage by
which information may be conveyed between computing
devices). This depiction of the storage 960 as including mul-
tiple distinct types of storage is in recognition of the com-
monplace use of more than one type of storage device in
computing devices in which one type provides relatively
rapid reading and writing capabilities enabling more rapid
manipulation of data by the processor component 950 (but in
which a “volatile” technology may be used constantly requir-
ing electric power) while another type provides relatively
high density of non-volatile storage (but likely provides rela-
tively slow reading and writing capabilities).

Given the often different characteristics of different stor-
age devices employing different technologies, it is also com-
monplace for such different storage devices to be coupled to
other portions of a computing device through difterent stor-
age controllers coupled to their differing storage devices

US 9,213,550 B1

29

through different interfaces. By way of example, where the
volatile storage 961 is present and is based on RAM technol-
ogy, the volatile storage 961 may be communicatively
coupled to coupling 959 through a storage controller 965a
providing an appropriate interface to the volatile storage 961
that perhaps employs row and column addressing, and where
the storage controller 965a may perform row refreshing and/
or other maintenance tasks to aid in preserving information
stored within the volatile storage 961. By way of another
example, where the non-volatile storage 962 is present and
includes one or more ferromagnetic and/or solid-state disk
drives, the non-volatile storage 962 may be communicatively
coupled to coupling 959 through a storage controller 9655
providing an appropriate interface to the non-volatile storage
962 that perhaps employs addressing of blocks of information
and/or of cylinders and sectors. By way of still another
example, where the removable media storage 963 is present
and includes one or more optical and/or solid-state disk drives
employing one or more pieces of machine-readable storage
medium 969, the removable media storage 963 may be com-
municatively coupled to coupling 959 through a storage con-
troller 965¢ providing an appropriate interface to the remov-
able media storage 963 that perhaps employs addressing of
blocks of information, and where the storage controller 965¢
may coordinate read, erase and write operations in a manner
specific to extending the lifespan of the machine-readable
storage medium 969. The machine-readable storage medium
969, with executable instructions stored thereon, may be an
example embodiment of a computer-program product that
may or may not be fabricated in large quantities to enable
distribution of those executable instructions.

One or the other of the volatile storage 961 or the non-
volatile storage 962 may include an article of manufacture in
the form of a machine-readable storage media on which a
routine including a sequence of instructions executable by the
processor component 950 may be stored, depending on the
technologies on which each is based. By way of example,
where the non-volatile storage 962 includes ferromagnetic-
based disk drives (e.g., so-called “hard drives™), each such
disk drive typically employs one or more rotating platters on
which a coating of magnetically responsive particles is depos-
ited and magnetically oriented in various patterns to store
information, such as a sequence of instructions, in a manner
akin to storage medium such as a floppy diskette. By way of
another example, the non-volatile storage 962 may be made
up of banks of solid-state storage devices to store informa-
tion, such as sequences of instructions, in a manner akin to a
compact flash card. Again, it is commonplace to employ
differing types of storage devices in a computing device at
different times to store executable routines and/or data. Thus,
a routine including a sequence of instructions to be executed
by the processor component 950 may initially be stored on the
machine-readable storage medium 969, and the removable
media storage 963 may be subsequently employed in copying
that routine to the non-volatile storage 962 for longer term
storage not requiring the continuing presence of the machine-
readable storage medium 969 and/or the volatile storage 961
to enable more rapid access by the processor component 950
as that routine is executed.

As previously discussed, the interface 990 (which may
correspond to one or both of the network interfaces 590 or
790) may employ any of a variety of communications tech-
nologies corresponding to any of a variety of communications
technologies that may be employed to communicatively
couple a computing device to one or more other devices.
Again, one or both of various forms of wired or wireless
communications may be employed to enable the processor

10

15

20

25

30

35

40

45

50

55

60

65

30

component 950 to interact with input/output devices (e.g., the
depicted example keyboard 920 or printer 925) and/or other
computing devices, where such interaction may be through a
network (e.g., the network 999) or an interconnected set of
networks. In recognition of the often greatly different char-
acter of multiple types of timings and/or protocols that must
often be supported by any one computing device, the interface
990 is depicted as including multiple different interface con-
trollers 995a, 9955 and 995c¢. The interface controller 9954
may employ any of a variety of types of wired digital serial
interface or radio frequency wireless interface to receive seri-
ally transmitted messages from user input devices, such as the
depicted keyboard 920. The interface controller 9956 may
employ any of a variety of cabling-based or wireless timings
and/or protocols to access other computing devices through
the depicted network 999 (perhaps a network made up of one
or more links, smaller networks, or perhaps the Internet). The
interface controller 995¢ may employ any of a variety of
electrically conductive cabling enabling the use of either
serial or parallel transmission to convey data to the depicted
printer 925. Other examples of devices that may be commu-
nicatively coupled through one or more interface controllers
of'the interface 990 include, without limitation, microphones,
remote controls, stylus pens, card readers, finger print read-
ers, virtual reality interaction gloves, graphical input tablets,
joysticks, other keyboards, retina scanners, the touch input
component of touch screens, trackballs, various sensors, a
camera or camera array to monitor movement of persons to
accept commands and/or data provided by those persons via
gestures and/or facial expressions, laser printers, inkjet print-
ers, mechanical robots, milling machines, etc.

Where a computing device is communicatively coupled to
(or perhaps, actually incorporates) a display (e.g., the
depicted example display 980, corresponding to the display
780), such a computing device implementing the processing
architecture 3000 may also include the display interface 985.
Although more generalized types of interface may be
employed in communicatively coupling to a display (whether
of the touch screen variety, or not), the somewhat specialized
additional processing often required in visually displaying
various forms of content on a display, as well as the somewhat
specialized nature of the cabling-based interfaces used, often
makes the provision of a distinct display interface desirable.
Wired and/or wireless communications technologies that
may be employed by the display interface 985 in a commu-
nicative coupling of the touch screen 980 may make use of
timings and/or protocols that conform to any of a variety of
industry standards, including without limitation, any of a
variety of analog video interfaces, Digital Video Interface
(DVI), DisplayPort, etc.

Some systems may use Hadoop®, an open-source frame-
work for storing and analyzing big data in a distributed com-
puting environment. Some systems may use cloud comput-
ing, which can enable ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications and
services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.
Some grid systems may be implemented as a multi-node
Hadoop® cluster, as understood by a person of skill in the art.
Apache™ Hadoop® is an open-source software framework
for distributed computing.

What has been described above includes examples of the
disclosed architecture. It is, of course, not possible to describe
every conceivable combination of components and/or meth-
odologies, but one of ordinary skill in the art may recognize
that many further combinations and permutations are pos-

US 9,213,550 B1

31

sible. Accordingly, the novel architecture is intended to
embrace all such alterations, modifications and variations that
fall within the spirit and scope of the appended claims.

The invention claimed is:

1. An apparatus comprising:

a processor component;

acommunications component for execution by the proces-
sor component to receive computer-executable query
instructions to solve a mixed-integer linear program-
ming (MILP) problem, wherein the query instructions
comprise:

a first expression that conveys an objective function and
at least one side constraint of the MILP problem,
wherein the objective function and the at least one
side constraint define a master problem of the MILP
problem;

a second expression that conveys a first mapping of data
values of graph data associated with the MILP prob-
lem to a first graph; and

a third expression that conveys a selection of a first
graph-based algorithm to solve a first subproblem of
the MILP problem based on the first graph;

a subproblem component for execution by the processor
component to replace the third expression in the query
instructions with a fourth expression as part of a decom-
position of the MILP problem, the fourth expression
comprising instructions to implement the first graph-
based algorithm to solve the first subproblem; and

an execution control component for execution by the pro-
cessor component to perform an iteration of solving the
MILP problem, wherein performing the iteration com-
prises:
executing the first expression to derive a solution to the

master problem; and

executing the fourth expression to derive a solution to
the first subproblem based on the first mapping and
the solution to the master problem.

2. The apparatus of claim 1, wherein:

the second expression conveys a second mapping of data
values of the graph data to a second graph;

the third expression conveys a selection of a second graph-
based algorithm to solve a second subproblem of the
MILP problem based on the second graph;

the fourth expression comprises instructions to implement
the second graph-based algorithm to solve the second
subproblem; and

performing the iteration comprises executing the fourth
expression to derive a solution to the second subproblem
based on the second mapping and the solution to the
master problem.

3. The apparatus of claim 2, wherein:

the third expression includes an indication that the first and
second subproblems are able to be solved independently
of each other; and

the subproblem component is to detect the indication that
the first and second subproblems are able to be solved
independently of each other, and generate the fourth
expression to cause the execution control component to
derive the solutions to the first and second subproblems
at least partially in parallel in response to detecting the
indication.

4. The apparatus of claim 3, comprising a parallel execu-
tion component for execution by the processor component to
coordinate at least partially parallel derivations of the solu-
tions to the first and second subproblems.

25

30

40

45

55

32

5. The apparatus of claim 1, wherein the execution control
component is to:

initiate a performance of the iteration;

determine whether the performance of the iteration solved

the MILP problem; and

repeat performance of'the iteration in response to the MILP

problem remaining unsolved.

6. The apparatus of claim 1, wherein:

the data values of the graph data are associated with at least

one of nodes of the first graph, or edges of the first graph

that each extend between a pair of nodes of the first
graph; and

the first graph is a graph of a network comprising the nodes

and the edges.

7. The apparatus of claim 1, comprising a network interface
to couple the communications component to a network to
receive the graph data, wherein:

the data values of the graph data are associated with nodes

of the first graph; and

the second expression comprises instructions to iterate

through the nodes of the first graph.

8. The apparatus of claim 1, comprising a network interface
to couple the communications component to a network to
receive the graph data, wherein:

the data values of the graph data are associated with edges

of the first graph that each extend between a pair of

nodes of the first graph; and

the second expression comprises instructions to iterate

through the edges of the first graph.

9. The apparatus of claim 1, comprising a communications
component for execution by the processor component to:

receive the graph data and the query instructions from a

computing device via a network; and

transmit a result of solving the MILP problem to the com-

puting device.

10. The apparatus of claim 1, comprising a rendering com-
ponent for execution by the processor component to generate,
by circuitry, a visualization of at least the first graph and of a
result of solving the MILP problem for presentation on a
display.

11. A computer-program product tangibly embodied in a
non-transitory machine-readable storage medium, the com-
puter-program product including instructions operable to
cause a computing device to perform computer operations
including:

receive computer-executable query instructions to solve a

mixed-integer linear programming (MILP) problem,

wherein the query instructions comprise:

a first expression conveying an objective function and at
least one side constraint of the MILP problem,
wherein the objective function and the at least one
side constraint define a master problem of the MILP
problem;

a second expression conveying a first mapping of data
values of graph data associated with the MILP prob-
lem to a first graph; and

athird expression conveying a selection of a first graph-
based algorithm to solve a first subproblem of the
MILP problem based on the first graph;

replace the third expression in the query instructions with a

fourth expression as part of a decomposition of the

MILP problem, the fourth expression comprising

instructions to implement the first graph-based algo-

rithm to solve the first subproblem; and

US 9,213,550 B1

33

operations of an iteration to solve the MILP problem,
wherein the operations of the iteration comprise:
executing the first expression to derive a solution to the
master problem; and
executing the fourth expression to derive a solution to
the first subproblem based on the first mapping and
the solution to the master problem.

12. The computer-program product of claim 11, wherein:

the second expression conveys a second mapping of data

values of the graph data to a second graph;
the third expression conveys a selection of a second graph-
based algorithm to solve a second subproblem of the
MILP problem based on the second graph;

the fourth expression comprises instructions to implement
the second graph-based algorithm to solve the second
subproblem; and

the operations of the iteration comprise executing the

fourth expression to derive a solution to the second sub-
problem based on the second mapping and the solution
to the master problem.

13. The computer-program product of claim 12, wherein

the third expression includes an indication that the first and

second subproblems are able to be solved independently
of each other; and

the computing device is caused to perform operations

including detect the indication that the first and second
subproblems are able to be solved independently of each
other, and generate the fourth expression to cause the
derivation of the solutions to the first and second sub-
problems at least partially in parallel in response to
detecting the indication.

14. The computer-program product of claim 13, wherein
the operations of the iteration comprise deriving the solutions
to the first and second subproblems at least partially in par-
allel.

15. The computer-program product of claim 11, the com-
puting device caused to perform operations including:

initiate a performance of the operations of the iteration to

solve the MILP problem;

10

15

20

25

30

35

34

determine whether the performance ofthe operations of the

iteration solved the MILP problem; and

repeat performance of the operations of the iteration in

response to the MILP problem remaining unsolved.

16. The computer-program product of claim 11, wherein:

the data values of the graph data are associated with at least

one of nodes of the first graph, or edges of the first graph
that each extend between a pair of nodes of the first
graph; and

the first graph is a graph of a network comprising the nodes

and the edges.

17. The computer-program product of claim 11, the com-
puting device caused to perform operations including, receive
the graph data, wherein:

the data values of the graph data are associated with nodes

of the first graph; and

the second expression comprises instructions to iterate

through the nodes of the first graph.

18. The computer-program product of claim 11, the com-
puting device caused to perform operations including, receive
the graph data, wherein:

the data values of the graph data are associated with edges

of the first graph that each extend between a pair of
nodes of the first graph; and

the second expression comprises instructions to iterate

through the edges of the first graph.

19. The computer-program product of claim 11, the com-
puting device caused to perform operations including:

receive the graph data and the query instructions from a

computing device via a network; and

transmit a result of solving the MILP problem to the com-

puting device.

20. The computer-program product of claim 11, the com-
puting device caused to perform operations including present,
by circuitry on a display, guidance to an operator of the
computing device in providing the first, second and third
expressions, and monitor manually-operable controls of the
computing device to receive the first, second and third expres-
sions.

